EFFECT OF LOAD AND TEMPERATURE ON FRICTION USING BANANA PEEL BLENDED WITH PARAFFIN OIL UNDER HIGH LOADING CAPACITY
DOI:
https://doi.org/10.2022/jmet.v11i2.5416Abstract
Increased severity in operating conditions coupled with the environmental and toxicity issues related with using conventional lubricants. In addition, high price of fossil fuels has led to exploration of new kind natural additives as bio-lubricant. Banana Peel as agricultural wastes are potential to be developed as bio-oils that to replace the petroleum products, due to their environmentally friendly characteristics, biodegradable, nontoxic and renewable. The purpose of this study is to produce lubricant oil from Banana Peel (BP) as bio additives in paraffin oil, as well as to determine their physical and tribological properties as bio-lubricant under severe operation conditions to identify their ability for lubricants. Tribological performance of Banana Peel (BP) as a bio-lubricant was tested using four-ball test machined under extreme pressure conditions, according to ASTM D 2783-03. Experimental results showed significant improvement in overall performance with increased BP content compared with paraffin oil (PO) through Coefficient of Friction parameter (COF) at 100 ˚C, lower value of COF which 0.086 for 50 %BP followed by 20% BP, 5% BP and 100 %PO at values 0.089, 0.456 and 0.595 respectively. As results, banana peel as Extreme Pressure and Anti-Wear additives has been proven itself able for use in lubrication applications for gear and engine oils.Downloads
Downloads
Published
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.