DEVELOPMENT OF TIN (IV) OXIDE BASED CATALYST FOR CARBON MONOXIDE EMISSION CONTROL
DOI:
https://doi.org/10.2022/jmet.v1i1.309Abstract
Tin (IV) oxide has been recognized as an alternative catalyst for carbon monoxide gas treatment generated from vehicular and industrial activities. Carbon monoxide is a poisonous gas produce from incomplete burning of hydrocarbon based fuel and emitted directly from vehicles tailpipes which can affect human health. In this research, tin (IV) oxide was used as a catalyst with the addition of cobalt (II) oxide and nickel (II) oxide as dopants, prepared by modification of sol-gel method. The catalytic ability was tested towards the oxidation of carbon monoxide using Continuous Fixed Bed Reactor (SELOX) instrument. Two catalysts, ECAT1-400 calcined at 400°C and ECAT2-600 calcined at 600°C gave a promising catalytic ability towards carbon monoxide oxidation. Both catalysts completed the carbon monoxide oxidation to carbon dioxide at 215°C and 200°C (commercial catalyst, Pt/ Al2O3 at 200°C). Several techniques were used in this research to characterize the physical and chemical properties of the catalyst materials. The nitrogen adsorption analysis reveals that the best prepared catalyst, ECAT2-600 is in form of mesopore, open cylindrical in shaped with pore diameter of 10nm. The x-ray diffraction analysis shows the presence of SnO2 tetragonal and Co3O4 cubic phase which act as the active site in the catalytic oxidation. The existence of cobalt oxide (in a mixture of Co2+ and Co3+) expected to contribute the excellent oxidation of carbon monoxide.Downloads
Downloads
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.