The Study of EMA Effect on Modal Identification: A Review
DOI:
https://doi.org/10.2022/jmet.v9i1.1517Abstract
Modal Analysis is a common practice to define parameters of structure under scientific view. The properties that come along need to be enlightened so that every circumstance appeared may be tackled in proper manner. Experimental Modal Analysis (EMA) is a well-known procedure for determining modal parameters. The EMA is regarded as an ‘indoor tools’ to examine modal parameters. Meanwhile, Operational Modal Analysis (OMA) on the other hand acts as an ‘outdoor tools’, or operated at site. Here, the EMA analysis method will be discussed. Modal parameters consist of mode shape, natural frequency and damping ratio.
Downloads
References
Wang, B.T. & Cheng, D.K. (2011). Modal Analysis by Free Vibration Response Only for Discrete and Continuous Systems. Journal of Sound and Vibration. 330: 3913-3929.
Kranj, T., Slavic, J. & Boltezar, M. (2013). The Mass Normalization of the Displacement and Strain Mode Shapes in a Strain Experimental Modal Analysis using the Mass-Change Strategy. Journal of Sound and Vibration, 332: 6968-6981.
Modak, S.V. (2013). Separation of Structural Modes and Harmonic Frequencies in Operational Modal Analysis using Random Decrement. Mechanical System and Signal Processing. 41: 366-379.
Zhang, L., Brincker, R. & Andersen, P. (2004). An Overview of Operational Modal Analysis: Major Development and Issues. In Proceedings of the 22nd. International Modal Analysis Conference (JMAC-XXII) pp. 179-190.
Xu, Y. F. & Zhu, W.D. (2013). Operational Modal Analysis of a Rectangular Plate using Non-contact Excitation and Measurement. Journal of Sound and Vibration. 332: 4927-4939.
Inman, D.J. (2013). Engineering Vibration, 4th. Edition. Prentice Hall, USA.
Maia, N. & Silva, J. (1997). Theoretical and Experimental Modal Analysis, Mechanical Engineering Research Studies: Engineering Dynamic Series. John Wiley & Sons Ltd.
Bernasconi, O. & Ewins, D.J. (1989). Modal Strain/Stress Fields. The International Journal of Analytical and Experimental Modal Analysis. 4 (2): 68-76.
Heylen, W., Lammers, S. & Sas, P. (2007). Modal Analysis Theory and Testing. Katholieke Universiteit Leuven, Haverlee.
Bernasconi, O. & Ewins, D.J. (1989). Application of Strain Modal Testing to Real Structures. In Proceedings of the 7th. International Modal Analysis Conference (IMAC-VII). pp. 1453-1464.
Yam, L., Leung, T., Li, Di & Xue, K. (1996). Theoretical and Experimental Study of Modal Strain Analysis. Journal of Sound and Vibration. 191 (2): 251-260.
Slavic, J., Simonovski, I. & Boltezar, M. (2003). Damping Identification Using a Continuous Wavelet Transform: Application to Real Data. Journal of Sound and Vibration. 262 (2): 291-307.
Parloo, E., Verboven, P., Guillaume, P. & Van Overmeire, M. (2002). Sensitivity-based Operational Mode Shape Normalization. Mechanical Systems and Signal Processing. 16: 757-767.
Aenlle, M.L., Fernandez, P. & Brincker, R. (2010). A. Fernandez-Canteli, Erratum to Scaling-factor Estimation Using an Optimized Mass-Changed Strategy. Mechanical Systems and Signal Processing. 24 (8): 3061-3074.
Vandiver, J.K., Dunwoody, A.B., Campbell, R.B. & Cook, M.F. (1982). A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique. Journal of Mechanical Design. 104: 307-313.
Ewins, D. & Gleeson, P. (1982). A Method for Modal Identification of Lightly Damped Structures. Journal of Sound and Vibration. 84 (1): 57-79.
Aenlle, M.L., Brincker, R. & Canteli, A.F. (2005). Some Methods to Determine Scaled Mode Shapes in Natural Input Modal Analysis. In Proceedings of the 23rd. International Modal Analysis Conference (IMAC-XXIII). Orlando, Florida, USA.
Brincker, R. & Andersen, P. (2003). A Way of Getting Scaled Mode Shapes in Output Only Modal Analysis. In Proceedings of the 21st. International Modal Analysis Conference (IMAC) XXI. Orlando, USA. pp. 141-145.
Hutton, D. (2003). Fundamentals of Finite Element Analysis. Engineering Series. McGraw-Hill Professional Publishing.
Leissa, A. (1969). Vibration of Plates. NASA SP, Scientific and Technical Information Division, National Aeronautics and Space Administration.
Allemang, R.J. (1982). A Correlation Coefficient for Modal Vector Analysis. In Proceedings of the 1st International Modal Analysis Conference (IMAC-1). Orlando, Florida, USA. pp. 110-116.
Downloads
Published
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.