Parameter Optimization and Temperature Prediction of Friction Stir Welding for Aluminum Alloy; Experiment, Simulation

Authors

  • Malek Moradijoz Amirkabir University of Technology, PO Box 15875-4413, Tehran
  • Hassan Basirat Tabrizi Amirkabir University of Technology PO Box 15875-4413, Tehran

DOI:

https://doi.org/10.2022/jmet.v8i2.648

Abstract

One of the most efficient methods for joining of aluminum alloys is friction stir welding  (FSW) process. In FSW, welding parameters and tool geometry affect the weld strength. Heat is generated by friction between the tool and the workpiece, is important to predict and identify the mechanical and micro-structural changes. In this study, first using the Taguchi approach a design of experiment technique to set the optimal process parameters is investigated. It is shown that with increasing the shoulder diameter, the tensile strength increases and with increasing the tool rotational speed the tensile strength decreases. The traverse speed has less effect. Moreover temperature distribution is investigated experimentally. Results are compared with the software based on finite element method, analytical method, and analytical-empirical method. The capabilities, weaknesses, and accuracy of each method are discussed and suggestion is given.

Downloads

Download data is not yet available.

Author Biographies

Malek Moradijoz, Amirkabir University of Technology, PO Box 15875-4413, Tehran

Mechanical engineering, Graduated M.Sc.

Hassan Basirat Tabrizi, Amirkabir University of Technology PO Box 15875-4413, Tehran

Mechanical Engineering, Professor

References

ASM, (1990). ASM International, Handbook committee, vol. 1 &2, New York, USA.

Bayazid, S. M., Farhangi, H.,& Ghahramani, A., (2015). Investigation of friction stir welding parameters of 6063-7075 aluminum alloys by Taguchi method. Procedia Materials Science, 11, 6-11.

Bozkurt, Y., (2011). The optimization of friction stirs welding process parameters to achieve maximum tensile strength in polyethylene sheets, Materials & Design, 35, 440–445.

Cam, G., (2011). Friction stir welded structural materials beyond Al-alloys, Int. Mater Rev, 56(1), 48–56.

Chao, Y.J., Qi, X., & Tang, W., (2003). Heat transfer in friction stir welding – experimental and numerical studies, Journal of Manufacturing Science and Engineering, 125, 138–145.

Colligan, K., (1999). Materials flow behavior during friction stir welding of aluminum, Weld Res Suppl., 78(7), 229–37.

Djarot, B., Darmadi, J. N., & Tieu, A. K., (2011). Analytic and finite element solutions for temperature profiles in welding using varied heat source models, World Academy of Science, Engineering and Technology, 81, 154-162.

Esme, U., (2009). Application of Taguchi method for the optimization of resistance spot welding process, Arab J Sci. Eng., 34(2B), 519–528.

Hwang, Y. M., Kang, Z. W., Chiou, Y. C., & Hsu, H. H., (2008). Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys, Int. J of Machine Tools and Manufacture, 48, 778–787.

Kejing, L., (2009). Numerical modeling of friction stir welding of dissimilar metals using functionally graded material concept and its experimental verification, (Ph.D. Dissertation), Clarkson University, USA.

Liu, H. J., Shen, J. J., Huang, Y. X., Kuang, L. Y., Liu, C., & Sci, C. L., (2009). Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper, Science and Technology of Welding & Joining, 14(7), 577-583.

Mijajlović, M. M., Pavlović, N. T., Jovanović, S. V. , Jovanović, D. S., & Milćić, M. D., (2012). Experimental studies of parameters affecting the heat generation in friction stir welding process, Thermal Science, 16(suppl. 2), 351-362.

Murr, L. E., Liu G., & McClure, J. C., (1997). Dynamic recrystallizations in friction stir welding of aluminum alloy 1100, Journal of Mater Sci. Let, 16, 1801–1803.

Nicholas, E. D., & Thomas, W. M., (1998). A review of friction processes for aerospace applications, Int. J Mater Prod Technol., 13, 55–45.

Rosenthal, D., (1946). The theory of moving source of heat and its application to metal transfer, ASME Transaction, 43(11), 849-866.

Salem, H. G., Reynolds, A. P., & Lyons J. S., (2002). Microstructure and retention of super plasticity of friction stir welded super plastic 2095 plate, Scr. Mater., 46, 337 – 342.

Shen, J. J., Liu, H. J., & Cui, F., (2010). Effect of welding speed on microstructure and mechanical properties of friction stir welded copper, Materials & Design, 31, 3937-3942.

Song, M., & Kovacevic, R., (2003). Thermal modeling of friction stir welding in a moving coordinate system and its validation, Int. Journal of Machine Tools and Manufacture, 43, 605–615.

Tutar, M., Aydin, H., Yuce, C., Yavuz, N., & Bayram, A., (2014). The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array, Materials & Design, 63, 789-797.

Veljić, D. M., Sedmak, A. S., Rakin, M. P., Bajić, N. S., Meddj, B. I., Bajić, D. R., Vencislav, K., & Grabulov, V. K., (2014). Experimental and numerical thermo-mechanical analysis of friction stir welding of high- strength aluminum alloy, Thermal Science, 18 (suppl.1), 29-38.

Xu, S., Deng, X., Reynolds, A. P., & Seidel, T. U., (2001). Finite element simulation of material flow in friction stir welding, Sci Technol Weld Joining, 6, 191-193.

Zaeh, M. F., & Voellner, G., (2010). Three-dimensional friction stir welding using a high payload industrial robot, Production Engineering , 4(2), 127-133.

Downloads

Published

2016-12-31

Issue

Section

Others