The Mechanical Properties Of Green Polyblend Based On Waste Polypropylene Filled In Variation Particle Size Natural Fiber And Initiator Concentration
DOI:
https://doi.org/10.2022/jmet.v4i2.357Abstract
Synthesis of green polyblend from waste polypropylene (recycle polypropylene, rPP) filled reinforcing husk rice powder (HR) in weight ratio rPP/HR (8/2) using multifunctional acrylic acid (AA) processed reactively in internal mixer had been carried out. To understand the effect of initiator concentration, some concentration variations of benzoyl peroxide (BPO) initiator had been done in 5 levels (0; 0.02; 0.05; 0.07; and 0.10 phr). Based on the mechanical properties (tensile strength, TS) and the melt flow index (MFI) in thermoplastic condition, it was found that the best concentration was 0.02%. To study the effect of particle size, four level variations (40; 70; 100 and 120 mesh) of the HR particle size using 0.02 phr BPO was prepared. It has been found that decreasing the particle size (40 to 120 mesh) decrease the MFI accordance with ASTM and
increase the TS value. To understand the correlation between particle size and biodegradability of the green polyblend, firstly, it was performed water absorption characterization to the polyblend specimen. Water absorption
(WA) studies showed an increase in water uptake with increase in particle size. Biodegradation of the green polyblend (reflected by the lost of weight, LW) was done by burying the specimen in cellulolytic bacteria enriched garbage soil for four months. The result showed that increasing the HR particle size (120 to 40 mesh) increase the biodegradation properties.
Downloads
Downloads
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.