Combination of CFD and Monte Carlo Simulation to Investigate the Nonlinear Behavior of a Non-aging Visc oelastic Plate in Subsonic Flow
DOI:
https://doi.org/10.2022/jmet.v5i2.351Abstract
Usually in studying the conventional fluid-solid interaction problems, both the flow field and the solid structure must be jointly meshed and solved. This takes a huge amount of iteration and time for calculation even for simple specific examples. One of the most industrial elements used in fuselage of aero-space systems is the plate whose instability and behavior, especially in the case of large deformation, is so vital due to its effect on the overall performance of the system. In this paper, utilizing a new method that combines the CFD and Monte Carlo simulation, the nonlinear behavior of a two dimensional simply supported non aging viscoelastic plate located in a subsonic flow is investigated. First, relative to the plate boundary conditions, the whole behavior of the plate is estimated. Then, using CFD simulation, the flow field is solved for some various plate deformations. This prepared a bank of data for the domain of plate response. Due to the dynamic behavior of a turbulent flow which presents highly nonlinear terms and disturbances; the aerodynamic forces are modeled by some random forcing functions using statistical procedure. Finally, using Monte Carlo simulation used for randomly excited ODEs, the forces evaluated from CFD for each deformation are applied to the nonlinear equation of motion of the plate and the behavior and possible instabilities are investigated.
Downloads
Downloads
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.