Plane Strain Fracture Toughness Determination for Magnesium Alloy
DOI:
https://doi.org/10.2022/jmet.v4i2.348Abstract
A stress intensity factor K was used as a fracture parameter to determine the true material property, i.e. plane strain fracture toughness KIC of AZ61 magnesium alloy using a single edge notch bend (SENB) specimen in accordance to ASTM E399 testing method. Five different specimen thicknesses of 2 to 10 mm were used in the test. A sharp fatigue pre-crack was initiated and propagated to half of specimen width at a constant crack propagation rate of about 1 x 10-8 m/cycle before the specimen was loaded in tension until the fracture stress is reached and then rapid fracture occurred. The fracture toughness KC values obtained for different thicknesses showed that KC value decreased with increasing specimen thickness. The highest KC value obtained was 16.5 MPa√m for 2 mm thickness specimen. The
value of KC became relatively constant at about 13 MPa√m when the specimen thickness exceeds 8 mm. This value was then considered as the plane strain fracture toughness KIC of AZ61 magnesium alloy. Calculation of the minimum thickness requirement for plane strain condition and the size of the shear lips of the fracture surface validate the obtained KIC value.
Downloads
Downloads
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.