Pt–Cu BIMETALLIC NANOPARTICLES SYNTHESIZED BY POLYOL METHOD UNDER DIFFERENT REDUCTION CONDITIONS
DOI:
https://doi.org/10.2022/jmet.v6i1.337Abstract
Platinum–copper (molar ratio 1:1) bimetallic nanoparticles were synthesized by polyol method using ethylene glycol (EG) as the solvent and PVP as the stabilisation agent under microwave conditions compare with reduction by using NaBH4 at room temperature and combination both technique of reduction. The samples were characterised by UVvis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron (XPS). UV-vis results show that formation of particles from colloid Pt-Cu bimetallic samples. TEM analyses confirm that the very fine and monodisperse with narrow size distribution particle with average particle size were 3.1 ± 1.0 nm for combination reduction technique, 3.3 ± 0.8 nm for microwave reduction and 4.1 ± 1.1 nm for NaBH4 reduction. XRD results show that there is no peak in the pattern of bimetallic nanoparticles observed unless peak of carbon refer to PVP carbon content. However XPS illustrates resulted that both elements in the nanoparticles are obtain based on characteristic metallic binding energy. Moreover, besides the influencing of sizes Pt-Cu bimetallic nanoparticles due to technique of reduction, it is also influence the Pt to Cu atomic ratio whereas 1:2, 1:1.3 and 1:1.7 respective to Pt-Cu (1:1)-mw; Pt-Cu (1:1)-NaBH4 and Pt-Cu (1:1)-comb.
Downloads
Downloads
Published
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.