EFFECT OF NON-POLLUTING AND RENEWABLE LOAD ON DELAMINATION OF A COMPOSITE BIOMECHANICAL MATERIAL
DOI:
https://doi.org/10.2022/jmet.v6i1.333Abstract
The objective of this paper is to develop a delamination model that can predict delamination growth in a new woven composite for orthopedic use. This composite material is obtained from a laminated composite woven by incorporating a natural organic load (granulates of date cores) which becomes hybrid composite. The composite is made of an organic matrix containing methyl methacrylate, a woven reinforcement including a reinforcing glass fiber and a fabric perlon having an absorbing role. The walk cycle has been used to determine the operating conditions of tibiae prosthesis. Hence, the deflection tests were validated by orthopedist experts. Three end-notched flexure (3ENF) tests were carried out on the new woven composite to detect delamination phenomenon. The formulation is based on damage mechanics and uses only two constants for delamination damage. We assume that the interface has a bi-linear softening behaviour and regarded as being a whole of several interfacial bonds. The model has been implemented into the commercial (FE) code. Numerical simulations were carried out in end-notched flexure (3ENF) tests to detect initiation and growth of delamination in the new woven composite.
Downloads
Downloads
Published
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.