DEVELOPMENT OF ANTILOCK BRAKING SYSTEM USING ELECTRONIC WEDGE BRAKE MODEL
DOI:
https://doi.org/10.2022/jmet.v6i1.328Abstract
The development of an Antilock Braking System (ABS) using a quarter vehicle brake model and electronic wedge brake (EWB) actuator is presented. A quarter-vehicle model is derived and simulated in the longitudinal direction. The quarter vehicle brake model is then used to develop an outer loop control structure. Three types of controller are proposed for the outer loop controller. These are conventional PID, adaptive PID and fuzzy logic controller. The adaptive PID controller is developed based on model reference adaptive control (MRAC) scheme. Meanwhile, fuzzy logic controller is developed based on Takagi-Sugeno technique. A brake actuator model based on Gaussian cumulative distribution technique, known as Bell-Shaped curve is used to represent the real actuator. The inner loop controls the EWB model within the ABS control system. The performance of the ABS system is evaluated on stopping distance and longitudinal slip of vehicle. Fuzzy Logic controller shows good performance for ABS model by reducing the stopping distance up to 17.4% compared to the conventional PID and Adaptive PID control which are only 7.38% and 12.08%.
Downloads
Downloads
Published
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.