Prediction of Peak Temperatures in Straight and Tapered Cylindrical Tool Profiles in Friction Stir Welding Using Improved Heat generation Models
DOI:
https://doi.org/10.2022/jmet.v10i1.1973Abstract
In this work, new model for the prediction of the peak temperatures in straight and tapered/conical cylindrical profiles FSW tools is presented through an improved analytical heat generation models. The developed models take into considerations that the welding process is a combination or mixture of the pure sliding and the pure sticking. From the obtained results, it is observed that increasing the tool rotational speed at constant weld speed increases the heat input, whereas the heat input decreases with an increase in the weld speed at constant tool rotational speed. Also, it was observed that the rate of heat generation at the shoulder is more in flat shoulder that the conical shoulder. The results in this work agreed with the experimental results. Therefore, the improved models could be used to estimate the heat generation in FSW tool.
Downloads
References
W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith and C. J. Dawes, Friction-Stir ButtWelding, GB Patent No. 9125978.8, International Patent Application No. PCT/ GB92/02203, 1991.
J. A. Schneider. Temperature Distribution and Resulting Metal Flow. In: Mishra RS, Mahoney MW, editors. Friction Stir Welding and Processing. Materials Park, OH (USA): ASM International, 2007, 71-110.
Y.J. Chao, X. Qi, W. Tang, Heat transfer in friction stir welding: experimental and numerical studies, ASME J. Manuf. Sci. Eng. 125 (2003), 138–145.
O. Frigaard, O. Grong, and O. T. Midling. A process model for friction stir welding of age hardening aluminium alloys. Metall. Mater. Trans. A. 32(2001), 1189–1200.
M. J. Russell and H. R. Shercliff H R 1st Int. Symp. On Friction Stir Welding (Thousand Oaks, California, USA), 1999.
P. A. Colegrove, H. R. Shercliff, R. Zettler. A model for predicting the heat generation and temperature in friction stir welding from the material properties. Sci. Technol. Weld. Joining 12 (2007), 284–297.
V. S. Gadakh, and A. Kumar. Heat generation model for taper cylindrical pin profile in friction stir welding. J. Mater.Res. Technol. 2(4) (2013), 370–375.
P. Ulysse. “Three-dimensional modeling of the friction stir-welding process.” Int’l Journal of Machine Tools and Manufacture, 42 (2002), 1549-1557.
S. Pala, M.P. Phanirajb,∗ Determination of heat partition between tool and workpiece during FSW of SS304 using 3D CFD modeling Journal of Materials Processing Technology 222 (2015) 280–286
M. B. Đurdanovic, M. M. Mijajlovic, D. S. Milcic, D. S. Stamenkovic, Heat Generation During Friction Stir Welding Process, Tribology in Industry,31 (2009), 1-2, pp. 8-14.
M. Mijajlović, and D. Milčić Analytical model for estimating the amount of heat generated during friction stir welding: Application on plates made of aluminium alloy. INTECH, Open Science 2024-T351, Chapter 11 (2012) 247–274.
T. K. Jauhari. Development of Multi-Component Device for Load Measurement and Temperature Profile for Friction Stir Welding Process [M.Sc Thesis]. Penang: UniversitiSains Malaysia; Unpublished. 2012.
A. Arora, T. Debroy, H. K. D. H. Bhadeshia. Back-of-the-envelope calculations in friction stir welding – velocities, peak temperature, torque, and hardness. Acta Mater 2011;59:2020–8.
A. Arora, R. Nandan, A. P. Reynolds, T. DebRoy. Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr Mater 60 (2009), 13–16.
N. S. M. El-Tayeb, K. O. Low, P. V. Brevern. On the surface and tribological characteristics of burnished cylindrical Al-6061. Tribol. Int 42(2009), 320–326
A. Devaraju, A. Kumar, B. Kotiveerachari. Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Trans Nonferrous Met Soc China 23(2013), 1275–1280
T. Sheppard and D. Wright. Determination of flow stress. Part 1 constitutive equation for aluminum alloys at elevated temperatures, Met. Technol., 6 (1979), 215–223.
T. Sheppard and A. Jackson. “Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys”, Materials Science and Technology, 13(3) (1997), 203–209.
R. K. Uyyuru, S. V. Kallas. Numerical analysis of friction stir welding process. J Mater Eng Perform, 15(2006), 505–518.
P. A. Colegrove, H. R. Shercliff. CFD Modelling of the friction stir welding of thick Plate 7449 aluminium alloy. Sci. Technol. Weld. Joining 11 (4) (2006), 429–441.
H. Wang, P. A. Colegrove, J. F. Dos Santos. Numerical investigation of the tool contact condition during friction stir welding of aerospace aluminium alloy. Comput Mater Sci. 71(2013), 101–108.
H. Su., C. Wu., M. Chen. Analysis of material flow and heat transfer in friction stir welding of aluminium alloys. China Weld (Engl Ed). 22 (2013):6–10.
H. Schmidt, J. Hattel, and J. Wert. An analytical model for the heat generation in friction stir welding. Modelling Simul. Mater. Sci. Eng. 12(2004): 143–157.
M. Z. H., Khandkar, J. A. Khan and R. A. Reynolds., Prediction of Temperature Distribution and Thermal History during Friction Stir Welding: Input Torque Based Model, Science and Technology of Welding and Joining., 8(3) (2003), 165-174.
Hamilton, C., Dymek, S. and Sommer, E. (2008). A Thermal Model for Friction Stir Welding in Aluminum Alloys. Int J Mach Tool Manuf. 2811201130.
Roy, G. G., Nandan, R. and DebRoy, T (2006). Dimensionless correlation to estimate peak temperature during friction stir welding. SciTechnol Weld Join; 11:606–8.
R. Nandan, G. Roy, and T. Debroy, Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metallurgical and Materials Transactions A, 2006. 37(4) (2006), 1247-1259.
Downloads
Published
Issue
Section
License
JMET Copyright Principles
JMET seeks to retain copyright of the articles it publishes, without the authors giving up their right to use their own material.
Originality
The manuscript is neither been published before, nor is it under consideration for publication in any other journals. It contains no matter that is scandalous, obscene, libelous or otherwise contrary to law.
Terms of Acceptance
When the article is accepted for publication, the authors shall hereby agree to transfer to the Journal of Mechanical Engineering and Technology, all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the author(s) specifically retain(s):
All proprietary right other than copyright, such as patent rights.
- The right to make further copies of all or part of the published article for my/our use in classroom teaching.
- The right to reuse all or part of this material in a compilation of my/our own works or in a textbook of which I/we am/are the author(s).
- The right to make copies of the published work for internal distribution within the institution that employs me/us.
The authors agree that copies made under these circumstances will continue to carry the copyright notice that appeared in the original published work. The authors agree to inform any co-authors, if any, of the above terms. The authors certify that they have obtained written permission for the use of text, tables, and/or illustrations from any copyrighted source(s), and they agree to supply such written permission(s) to Journal of Mechanical Engineering and Technology upon request.