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ABSTRACT 
 
In this paper, the unknown heat flux is estimated with Davidon-Fletcher-Powell (DFP), Broydon–
Fletcher–Goldfarb–Shanno (BFGS) and Symmetric Rank-one (SR1) version of variable metric 
method (VMM). The numerical techniques used in this study solved the inverse problems with 
various boundary and environmental conditions so efficiently. The results shows the sensitivity of 
measurement errors and different parameter including changes of slope and angle which can be 
functions of an unknown parameter. Further, the speed of convergence is assessed and the 
convergence behavior is found. The accuracy of results show that this study is a powerful 
reference for comparing results obtained based on the three proposed techniques. The solution 
procedure introduced a general fast method which can be used for the inverse heat conduction 
problem in rocket nuzzle and same heat conduction, radiation and convection problems. 
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1.0 INTRODUCTION 
 

The nozzle plays an important role in the rocket motor, as the equipment of converting 
energy and producing thrust force for rocket, it converts the thermal energy of gases into 
the kinetic energy. During the motor operation process, the nozzle must endure the impact 
of jet flow with high temperature and pressure. The high temperature from the inner 
contour of the nozzle conducted into its shell leads to the increase and decrease of the 
erosion of nozzle throat insert and the material strength of the nozzle shell, respectively. 
Additionally, it enlarges the throat radius which makes thrust descend, and also reduces 
the nozzle thrust efficiency. Under these situations, the nozzle design obviously affects 
the motor performance. Evaluation of rocket nozzle safety and its reliability can be 
assessed through numerical analysis of heat transfer and wall temperature. In order to 
meet the requirements in resisting the nozzle shell temperature and the jet flow, the throat-
insert materials need to be inserted in the nozzle inner counter to form protection. There 
are three major material requirements, which are the throat-insert, thermal liner and 
insulator materials [1]. 
The nozzle throat which consists of an expensive super alloy, will directly affect the 
nozzle efficiency and is very effective for reduction of the running costs of a power 
generation plant. Accordingly, it is very important for the life assessment of the nozzle to 
predict the operating conditions and to establish a basis for the criteria of repair. 



Therefore, the heat conduction problem design in the nozzle and the method to choose 
moderate throat-insert materials are of the essential importance indeed [2-4]. As a result, 
the estimation of heat flux in the rocket nozzle throat in high temperature environment is 
a crucial building block for assessing the safety and reliability of the nozzle. 
The inverse heat conduction problem is concerned with different parameters. Among 
these parameters, one can refer to the thermal conductivity, the volumetric heat capacity, 
the initial condition, the boundary conditions, and the heat sources from knowledge of the 
temperature or heat flux measurements taken at the interior point of the solid or on its 
back surface [5-7]. Solution methods of the inverse heat transfer problems (IHTP) for 
heat flux estimation can generally be classified into two categories: sequential methods 
and whole domain methods. Both of these two categories involve minimization of a sum 
of squares of errors function defined on the basis of the difference between measured and 
calculated temperatures. In the sequential function (SFS) method [8], which is the most 
noted algorithm of the first group, unknown heat fluxes are estimated in a consecutive 
manner. That is, the algorithm is based on marching in time and determining the unknown 
heat flux in current time step using future data by setting the derivative of the error 
function with respect to unknown heat fluxes equal to zero. In the whole domain methods, 
in which all of the known heat fluxes are estimated simultaneously, the minimization of 
the sum of squares of error function is achieved by the iterative minimization 
(optimization) techniques [9-14]. One of these techniques is called the variable metric 
method (VMM). The VMM has superior characteristics as compared to the conjugate 
gradient method. The VMM is a powerful technique in the context of nonlinear 
optimization problems. This method has been utilized in the solution of inverse problems 
[15-21]. In this paper, a comprehensive discussion on DFP, BFGS and SR1 is presented 
for estimating the unknown boundary heat flux based on the boundary temperature 
measurements history that is measured at outside the body. Furthermore, three examples 
are employed to demonstrate and discuss results of the three version of VMM in detail in 
the following sections [26]. 
 
2.0 The direct problem 

 
The specimen is a nozzle throat (see Fig-1) this slab originally has a uniformly 

distributed temperature. A heat flux q (t) is applied to x = l at a specific time (t > 0), 
convective heat flux at x = 0 with constant Heat transfer coefficients at the constant 
temperature. The following hypotheses have been taken into account: 

 
1- Thermo-physical properties are assumed to be constant.  
2- Heat transfer is one-dimensional. 
3- Heat transfer coefficients are constant. 
4- Radiation is not important. 
 
Under these conditions, the heat transfer process in the specimen can be described by 

the following system of equations: 
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Here k, ρ and c are the thermal conductivity, density, heat and capacity, respectively.  
 
The governing equation is parabolic and the solution for the above heat conduction 
problem is solved by using finite volume method [22]. 

 

 
 

 

3.0 Simulated inexact measurement 

 
The measured temperature data must contain measurement errors. a normally 

distributed uncorrelated error with zero mean and constant standard deviation are 
considered, In order to compare the results for situations involving random measurement 
errors can be expressed as: 
 
Y=Y_exact+ωσ                                                                                                      (2) 
 
Where Y_exact and Y in Eq.(2) are the solution of the direct problem with an exact 
boundary heat flux q(l,t) and the measured temperature, respectively. Furthermore, ω is 
the random variable with normal distribution, zero mean and unitary standard deviation 
and for the 99% confidence bound we have [9]      -2.576 < ω < 2.576 
 

4.0 Inverse problem 

 
In this inverse problem the heat flux q (t) is unknown; and the unknown heat flux find 

by the VMM method stated below the boundary heat flux at x = l is regarded as being 
unknown, but everything else in equations (1.a)–(1.d) is known. In addition, temperature 
readings at x = 0 are considered available. The temperature reading taken by sensors at x 
= 0 be denoted by Y (0, t), it is noted that the measured temperature Y (0, t) contain 
measurement errors. With the above mentioned measured temperature data Y (0, t), the 
method estimate the unknown boundary heat flux q (l, t) in such a way that the following 
functional is minimized: 

 
݂ = ∑ ∑ ௞ݔ)ܻ] , −(௠ݐ ௞ݔ)ܶ , ௠ݐ ௠෥ݍ, )]ଶெ

௠ୀଵ
௞
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Figure 1. The one-dimensional rocket nuzzle throat 
geometry 



In the above definition, K is total number of sensors, Y is the measured temperature at 
sensor location of x_k, and T is the calculated temperature utilizing the direct heat 
conduction model (Eq. 1) based on a given or assumed vector for q⃗. 

 
4.1. VMM 

 The variable metric method (VMM), belong to the gradient optimization techniques. 
It can minimize the object function through an iterative procedure. The variable metric 
method is very stable and continues to progress towards the minimum even when dealing 
with highly distorted and eccentric functions. The steepest descent method, the conjugate 
gradient method, the Newton method and the variable metric method (VMM), all belong 
to the gradient based class of unconstrained optimization techniques. However, VMM 
has superior characteristics in relation to the others [24]. The variable metric method is 
very stable and continues to progress towards the minimum even when dealing with 
highly distorted and eccentric functions. Zhang et al. demonstrated mathematically that 
for a strictly convex quadratic objective function, the generated iterative sequence of 
VMM converges to the unique solution of the problem globally and super linearly [23]. 
The iterative procedure for the VMM can be summarized as follows: 
 
Step 1: Find the pulse sensitivity coefficients for each components of ⃗ݍ by solving Eqs. 
(6.a)– (6.d) in the entire time domain. 
 
Step 2: At the start an initial guess for ⃗ݍ and with a M× M positive definite symmetric 
matrix H1 (M is total number of unknowns). H1 is taken as the identity matrix I. Set 
iteration number as i=1. 
 
Step 3: Compute the gradient of the objective function,∇fሬሬሬ⃗ ୧;(defineat below)at the base 
point ݍపሬሬሬ⃗ .; and define search direction as: ܵ⃗௜ = fሬሬሬ⃗∇ܪ− ୧ 
 
Step 4: Normalize ௜ܵ by its magnitude:  ܵ⃗௜ = ܵ⃗௜/ฮܵ⃗௜ฮ 
 
Step 5: compute the optimal step length λ௜∗in the direction ܵ⃗௜ and achieve to the next⃗ݍ௜ 
using: ⃗ݍ௜ାଵ = ௜ݍ⃗ + λ௜∗ܵ⃗௜ 
 
Step 6: Test the new ⃗ݍ௜ାଵ for optimality. If ⃗ݍ௜ାଵis optimal, terminate the iteration process. 
Otherwise, go to step (7). 
 
Step 7: Update the ((H)) matrix  
 
Step 8: Set the new iteration number i=i+1, and go to step 3 
 
''M'' is total number of time steps that cover the entire time domain and the unknown heat 
flux q (t) is discretized into M time components. All the components are gathered inside 
a vector ⃗ݍ as: 
 
ݍ⃗ = ,(ଵݐ)ݍ⃗] ,(ଶݐ)ݍ⃗ … ,  (4)                                                                                           [(ெݐ)ݍ⃗
 
For Kth sensors, sensitivity coefficient of measured temperature is obtained with respect 
to eachݍ௠෥ : 
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The above equation should also be solved separately for every M time in order to compute 
X(ݔ௞ , ௠ݐ ௠෥ݍ, ). 
 
The Gradient of objective function which must be minimized used in VMM has the form 
of: 
  
∇ሬሬ⃗ ௡݂×ଵ = [ డ௙
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And from the Eq. (7) we can write ∇fሬሬሬ⃗ ୧as: 
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In step (5) of VMM, the optimal step size (λ௜∗) in the direction of ௜ܵ is a value of λ௜∗that 
minimizes ݂(⃗ݍ௜ + λ௜∗ܵ⃗௜) with respect to λ௜∗ i.e., λ௜∗ is the root of the following equation: 
 
ௗ௙(௤ሬ⃗ ೔ା஛೔

∗ௌ⃗೔)
ௗ஛೔

∗ = 0                                                                                                            (9) 

 
For the stopping criteria (step 8); In this work‖f‖ ≤  is used as the stopping criteria,In ߝ
the case of non-noisy data, ߝ is an arbitrary small number (in this work ߝ = 0.001). But 
in the case of noisy data, ߝ should be chosen based on the iterative regularization method 
in order to reduce sensitivity of the solution to the random noise errors. The main idea in 
the iterative regularization is to stop the iterative procedure close but not exactly at the 
optimum point. Then, it will tend to regularize the solution and to damp out the destructive 
effects of random noises in data.  
 
ߝ = ݇ ܯ× ×  ଶ                                                                                                                           (10)ܣ
 
But in this work we use ߝ = 3 for noisy data because it has better results.Different version 
of VMM has a different way to update the H (step7). 
Symmetric Rank-one (SR1) update by: 
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Davidon-Fletcher-Powell (DFP) : 
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Broydon–Fletcher–Goldfarb–Shanno (BFGS): 
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  (13) 

 
 
5.0  Results and discussion 

Our simulations define from Eqs. (1.a) – (1.d) that estimates the strength of the 
boundary heat flux. To illustrate the accuracy of the BFGS, SR1 and DFP in predicting 
boundary heat flux q (l, t) with the present inverse analysis, three different boundary heat 
flux functions over temporal domain; namely, a third degree polynomial function, 
triangular function and a step function are adopted to illustrate the numerical modeling. 
The exact temperature and the heat flux used in the following examples are selected so 
that these functions can satisfy Eqs. (1.a) – (1.d). 

 
q (l,t)Initial = 0 
 
The following computational parameters are chosen for the numerical experiments: 
 
T0=25 °C,  T∞ =25°C, l =0.01 m, k =138 W/ (m.k) ,  α=5.369×10-5 m2 /s, h=5000 W/ 

(m2 k) 
 
Here α is the thermal diffusivity of the material. Besides, the space and time increments 

used in numerical calculations are taken as ∆x =0.00001m (i.e.1000 grid points in space) 
and ∆t =1s (i.e.30 grid points for ݐ௙= 30s). We now present below tree numerical test 
cases in determining q (l,t) by the inverse analysis using the different version of the VMM. 

 
Numerical Test-Case 1: The unknown transient boundary heat flux q (l,t) is assumed 

applied at x = l in the following form:  
 
q(l, t) = −252.5tଷ + 1.547 × 10ସtଶ − 3.475 × 10ହt + 3.26 × 10଺                                              (14) 
 
The relative root mean square error (eRMS) for the estimated q (l, t) is defined as: 
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× 100%                                                                                   (15) 

 
 



Where I and N represent the index of discrete time and total number of measurements, 
respectively, while ݍത(݈,  .denote the estimated values of heat flux (ܫ

 
Table 1.Root mean square error and 

convergence criteria for estimating heat flux to 
the third degree polynomial. 

 

 Number 
of 
Iterations 

RMSe
 

Run 
time (s) 

||∇݂|| 
at final 

DPF 
o0 C.   

 
26 

 
9.70 

 
11.07 

 
3.91*10-6 

SR1
o0 C.   

 
22 

 
9.71 

 
10.81 

 
3.68*10-6 

BFGS 
o0 C.   

 
23 

 
9.69 

 
10.56 

 
3.21*10-6 

DPF   
o3 C.   

 
13 

 
11.75 

 
8.62 

 
3.34*10-4 

SR1
o3 C.   

 
12 

 
11.86 

 
8.21 

 
2.28*10-4 

BFGS 
o3 C.   

 
12 

 
11.25 

 
8.18 

 
3.12*10-4 

DPF 
o10 C.   

 
17 

 
39.81 

 
9.35 

 
6.34*10-4 

SR1  
o10 C.   

 
14 

 
45.88 

 
8.32 

 
7.59*10-4 

BFGS  
o10 C.   

 
14 

 
31.02 

 
8.94 

 
4.35*10-4 

 
 
 
 
 

 
Figure. 2.a. The estimation of the third degree 

polynomial heat flux with ߪ = 0 
 
 
 
 
 
 

 
Figure. 2.b The estimation of the third 

degree polynomial heat Flux with ߪ = 3 

 
         Figure. 2.c The estimation of the third degree 

polynomial heat Flux with ߪ = 10 
 



 
Figure.2(a-c) and Table shows that in the third degree polynomial heat flux, if the 
measurement error for the temperatures, measured by sensor, is σ = 0 ◦C, each of the three 
version of VMM converge very rapidly and exact enough to the real heat flux and have a 
same root mean square error, but BFGS and SR1 are faster than DFP. In σ =3 DFP and 
BFGS have a good root mean square error, However, SR1 and BFGS converge faster than 
DFP. In large measurement errors BFGS have faster and more accuracy answers than two 
other version. 

 
Numerical Test-Case 2: The unknown boundary heat flux q(l,t) is assumed applied at x= l in 

the following form:  
 
 

 
6 6

6 6

0 0 t 1

1 0 t - 1 0q l , t 1 t 1 6
5

- 1 0 t + 2 9 1 0 1 6 t 3 0
5


  

  

 

 
  

 
 
                                     

(16) 
 

 
  
 

Table 2.Root mean square error and 
convergence criteria for estimating triangular  

heat flux 

 
 

 Number 
of  
Iterations 

RMSe
 

Run 
time (s) 

||સࢌ|| 
At 
final 

DPF    
o0 C.   

 
24 

 
12.56 

 
10.88 

 
3.26*10-

6 
SR1     

o0 C.   

 
20 

 
12.55 

 
10.25 

 
3.62*10-

6 

BFGS  
o0 C.   

 
20 

 
12.55 

 
10.25 

 
4.83*10-

6 
DPF    

o3 C.   

 
9 

 
12.67 

 
7.45 

 
3.26*10-

4 
SR1     

o3 C.   

 
10 

 
14.18 

 
8.10 

 
3.33*10-

4 
BFGS 

o3 C.   

 
10 

 
12.80 

 
7.78 

 
3.67*10-

4 

DPF  
o10 C.   

 
15 

 
30.17 

 
11.35 

 
7.19*10-

4 
Sr1    

o10 C.   

 
14 

 
38.09 

 
11.32 

 
8.91*10-

4 
BFGS 

o10 C.   

 
14 

 
36.63 

 
9.15 

 
6.27*10-

4 

 
 
 

 
 
Figure. 3.a. The estimation of the triangular 

heat flux with ߪ = 0 
 

  
  



 

Figure. 3.c. The estimation of the 
triangular heat flux with ߪ = 3 

 
Figure. 3.d. The estimation of the triangular heat 

flux with ߪ = 10 

 
Numerical Test-Case3: The unknown boundary heat flux q (l , t ) is assumed applied at x 
= l in the following form: 

 
  

,݈)ݍ (ݐ = ൝
0                             0 ≤ ݐ ≤ 16

,
3.6 × 10଺                      16 < ݐ ≤ 30         

ൡ                                                                              (17) 

 
Table 3.Root mean square error and conve 
rgence criteria for estimating step heat flux 

  
 

 

 Numb
er of  

Iterati
ons 

RMSe
 

Run 
time 

(s) 

||સࢌ|| 
at final 

DPF 
o0 C.   

 
33 

 
0.25 

 
12.07 

 
2.10*10-6 

SR1 
o0 C.   

 
28 

 
0.20 

 
10.72 

 
4.01*10-6 

BFGS 
o0 C.  

 
28 

 
0.18 

 
10.92 

 
2.01*10-6 

DPF
o3 C.   

 
17 

 
7.77 

 
9.16 

 
3.68*10-6 

SR1
o3 C.   

 
16 

 
8.45 

 
8.67 

 
2.09*10-4 

BFGS
o3 C.   

 
16 

 
6.47 

 
8.42 

 
3.39*10-4 

DPF
o10 C.   

 
17 

 
21.54 

 
8.62 

 
7.19*10-4 

Sr1  
o10 C.   

 
16 

 
25.55 

 
8.72 

 
3.41*10-4 

BFGS 
o10 C.   

 
16 

 
29.27 

 
8.91 

 
4.41*10-4 

Figure. 4.a. The estimation of the step  
heat flux with ߪ = 0 



 

 
Figure. 4.b. The estimation of the step  heat 

flux with ߪ = 3 

 
Figure. 4.c. The estimation of the step  heat flux 

with ߪ = 10 

 
In this numerical test-case results are same to triangular heat flux and show that if the 

function of unknown heat flux is change suddenly, the DFP is better method for 
estimation of unknown heat flux than other two kinds. For utilize these inverse methods 
for design and analyze of nozzle we must show that the estimated flux by BFGS or DFP 
lead to same temperature distribution to real flux. 

 
 
 
 

 
 

Figure. 5.a exact and estimate temperature history at x=l with ߪ = 3 (the triangular 
heat flux). 



 

 
Figure. 5.bexact and estimate temperature history at x= l  

with ߪ = 3  (the third degree polynomial heat flux). 
 

 
Figure.5. (a) and Figure.5.(b) shows that, the estimate temperature history (the 
temperature that calculate with estimate heat flux) at x = l , have a good accuracy and 
could be used in engineering design for rocket nozzle. 
 
 
 
  

Figure.6.a Trend for reduction of ฮ݂ߘሬሬሬሬሬ⃗ ฮafter 
each iteration of VMM cycle with ߪ = 0 (the 

third degree polynomial heat flux). 

 
Figure.6.b Trend for reduction of ฮ݂ߘሬሬሬሬሬ⃗ ฮafter each 

iteration of VMM cycle with ߪ = 3 (the third degree 
polynomial heat flux). 
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Figure.6.c Trend for reduction of ฮ݂ߘሬሬሬሬሬ⃗ ฮafter 
each iteration of VMM cycle with ߪ = 0 (the 

third degree polynomial heat flux). 
 

 
Figure.6.d Trend for reduction of ฮ݂ߘሬሬሬሬሬ⃗ ฮ after 

each iteration of VMM cycle with ߪ = 0 (the step 
heat flux). 

 
 

 
Figure.6.e Trend for reduction of ฮ݂ߘሬሬሬሬሬ⃗ ฮ after 

each iteration of VMM cycle with ߪ = 3 (the 
step heat flux) 

 
Figure.6.f Trend for reduction of ฮ݂ߘሬሬሬሬሬ⃗ ฮ 

after each iteration of VMM cycle with ߪ =
10 (the step heat flux) 

 
Trend for reduction of  ฮ݂ߘሬሬሬሬሬ⃗ ฮ after each iteration can be seen in the fige.6.(a-f) it clearly 

shows BFGS converge with less iteration than DFP and almost SR1, the total time  for 
estimate the third degree polynomial, the triangular and the step heat Flux by the BFGS 
is 83.6s and by SR1 is 84.63s and DFP is 88.54s, total times show that the SR1 rate for 
convergence is better than other version of the VMM. Total e_rms for estimate the third 
degree polynomial, the triangular and the step heat Flux with σ = 0 , σ = 3 , σ =10 by the 
BFGS is 149.86 and the SR1 is 165.86 and finally by the DFP is 146.22. 
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6.0 Conclusions 
 
Inverse heat conduction problem algorithms based on BFGS, SR1 and DFP were 

formulated in this paper. The various version of VMM was successfully applied for the 
solution of the inverse heat conduction problem in determining the unknown transient 
boundary heat flux by utilizing simulated temperature obtained from the boundary with 
measurement error. From the numerical test cases in this study it is concluded that the 
inverse solution obtained by using the technique of BFGS is best method for estimation 
of unknown function with uniform change, and for the function with sudden changes, the 
DFP has better convergence criteria than other two kinds. 
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