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ABSTRACT

This article deals with the performance of a hydromagnetic short porous 
bearing. An electrically conducting lubricant in the presence of a 
transverse magnetic field has been taken into consideration while the plates 
are electrically conducting. The related Reynolds’ equation governing 
the fluid film pressure is solved under suitable boundary conditions to 
get the pressure distribution leading to the computation of load carrying 
capacity. The results presented in graphical form establish that the bearing 
system registers an improved performance due to hydromagnetization. 
Besides, the load carrying capacity increases considerably with respect to 
the conductivity. It is revealed that the negative effect of porosity and the 
ratio of breadth to height can be neutralized up to a considerable extent 
by the positive effect of hydromagnetization suitably choosing the plate 
conductivity and the aspect ratio. It is found that the hydromagnetization 
presents the friction at both the plates to be equal.

KEYWORDS: Hydromagnetic lubrication,short bearing, Reynolds’ 
equation, load carrying capacity, friction 

1.0 INTRODUCTION

(Pinkus and Sternlicht, 1961) laid down the classical analysis of the 
hydrodynamic lubrication of slider bearings. Subsequently, in this 
direction significant amount of works were done by several investigators 
(Lord Rayleigh, 1918), (Archibald, 1950), (Charnes and Saibel, 1952), 
(Cameron, 1966), (Gross et al., 1980), (Hamrock, 1994), (Basu et al., 
2005), (Majmudar, 2008). Equally important are the contributions of 
(Bagci and Singh, 1983), (Osterle et al., 1958), (Patel and Gupta, 1983) 
and (Abramovitz, 1955) concerning the performance of hydrodynamic 
slider bearing. (Mc. Allister et al. 1980) discussed the design of optimum 

* Corresponding author email: jrmpatel@rediffmail.com 



ISSN: 2180-1053        Vol. 7     No. 2    July - December  2015

Journal of Mechanical Engineering and Technology 

20

one dimensional slider bearing in terms of the load carrying capacity. 
An approximate analytic solution for performance characteristics of a 
porous metal bearing was proposed for the first time by (Morgan and 
Cameron, 1957). The exact solution of this problem was obtained by 
(Rouleau, 1963). (Prakash and Vij, 1973) investigated the hydrodynamic 
lubrication of a plane slider bearing resorting to several geometries.
 
It is a well known fact that if the liquid metals such as mercury and 
sodium are pumped or held between moving surfaces of a bearing, 
larger loads can be supported by employing a strong magnetic field. 
The application of a large magnetic field results in electromagnetic 
pressurization as the liquid metals are large electrical conductors. This 
aspect of study was explored by (Elco and Huges, 1962), (Kuzma, 1964) 
and (Kuzma et al. 1964). From these investigations, it becomes clear that 
it is possible to increase the load carrying capacity by the utilization of 
electromagnetic force, thereby overcoming the defects associated with 
the lubricant at higher temperature and hence alleviating the drawback 
of low viscosity. The load carrying capacity can be made to register high 
increase by taking recourse to super conducting magnets while little 
amount of power is required to provide the magnetic field. A good deal 
of research has been done regarding the theoretical and experimental 
studies on the hydromagnetic lubrication of porous as well as plane 
metal bearings (Snyder, 1962), (Shukla, 1963), (Patel and Hingu, 1978). 
(Shukla and Prasad, 1965) analyzed the performance of hydromagnetic 
squeeze films between two conducting non-porous surfaces and 
discussed the effect of conductivities on the behavior of squeeze film. 
(Sinha and Gupta, 1974) investigated the hydromagnetic effect on the 
behavior of squeeze film between porous annular plates. (Patel and 
Gupta, 1979) deployed Morgan – Cameron approximations simplifying 
the analysis for hydromagnetic squeeze films between parallel plates 
for a number of geometrical shapes. (Prajapati, 1995) also studied the 
behavior of magnetic fluid based porous squeeze film between plates 
of various geometries. For a short bearing (Patel et al. 2010) observed 
that the magnetic fluid resulted in a marginally improved performance. 
Here it has been sought to analyze the performance of a hydromagnetic 
short bearing.
 

2.0 ANALYSIS 

The geometrical configuration of the bearing which is infinite in 
Z-direction is presented in Figure 1.
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In the X-direction the slider moves with the uniform velocity u. L is the 
length of the bearing and the breadth B lies in the Z-direction, wherein, 
B << L. The pressure gradient ∂p / ∂z is much larger than the pressure 
gradient ∂p / ∂x as the dimension B is very small. Therefore, ∂p / ∂x 
can be neglected. The lubricant film is considered to be isoviscous, 
incompressible and the flow is laminar. Under the usual assumptions of 
hydromagnetic lubrication the modified Reynolds’ equation governing 
the lubricant film pressure is obtained as (Patel and Deheri, 2004), 
(Vadher et al., 2008), (Patel et al., 2010).
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when there is no flow. Lastly, a comparison of this investigation with the discussion of 
(Patel and Deheri, 2004) reveals that the load carrying capacity is comparatively 
reduced here. Probably, this is due to the fringing phenomena which occur when the 
plates are electrically conducting. 
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obviously X = x/L. It is manifest that the friction is independent of 
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ratio B/h2. In addition, the distribution of load carrying capacity comes 
through the factor,

5 
  

Therefore, the frictional force in non-dimensional form is given by,  
 

E
1

  0F             (10) 

In addition, at the fixed plate (Y = 1) one finds that, 
 

E
1

2EDC)(
2h

L
3mZ

τ 


            (11) 

 
Finally, the frictional force in dimensionless form is obtained as, 
 

E
1

  F1                (12) 

 
 
3.0 RESULTS AND DISCUSSIONS 
 
It is clearly seen from Equations (4) and (5) that the non-dimensional pressure and load 
carrying capacity are dependent on various parameters such as magnetization M, 
porosity , conductivity 0 + 1, aspect ratio m and ratios L/h2 and B/h2. However, the 
Equations (10) and (12) suggest that the friction depends on the aspect ratio m and 
obviously X = x/L. It is manifest that the friction is independent of hydromagnetization 
M. Taking the conductivity  0 + 1 to be zero in the limiting case of M  0; the present 
analysis turns in essentially, the discussions of (Basu et al., 2005) in the absence of 
porosity. It is noticed that conductivity 0 + 1 increases the load carrying capacity for 
fixed values of magnetization M, porosity , aspect ratio m and the ratio B/h2. In 
addition, the distribution of load carrying capacity comes through the factor, 
 

 
 























110

M/2
M/2tanh

10
 

 
For large values of M this approaches to, 
 

















110

10  

 
as tanh(M/2)  1. It is observed that as conductivity 0 + 1 increases the load carrying 
capacity increases. Here it is pertinent to see that the bearing can support a load even 
when there is no flow. Lastly, a comparison of this investigation with the discussion of 
(Patel and Deheri, 2004) reveals that the load carrying capacity is comparatively 
reduced here. Probably, this is due to the fringing phenomena which occur when the 
plates are electrically conducting. 

(13) 

(14) 

For large values of M this approaches to,

5 
  

Therefore, the frictional force in non-dimensional form is given by,  
 

E
1

  0F             (10) 

In addition, at the fixed plate (Y = 1) one finds that, 
 

E
1

2EDC)(
2h

L
3mZ

τ 


            (11) 

 
Finally, the frictional force in dimensionless form is obtained as, 
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as tanh(M/2)  1. It is observed that as conductivity 0 + 1 increases the load carrying 
capacity increases. Here it is pertinent to see that the bearing can support a load even 
when there is no flow. Lastly, a comparison of this investigation with the discussion of 
(Patel and Deheri, 2004) reveals that the load carrying capacity is comparatively 
reduced here. Probably, this is due to the fringing phenomena which occur when the 
plates are electrically conducting. 
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Figure 4. Variation of load carrying capacity with respect to M and B/h2. 
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Figure 5. Variation of load carrying capacity with respect to M and . 

 
 
 Figures 2 to 5 depict the variation of load carrying capacity with respect to the 
magnetization parameter M for various values of conductivity 0 + 1, aspect ratio m, 
the ratio B/h2 and porosity . It is noticed that the load carrying capacity gets increased 
with increasing values of magnetization parameter M. It is also seen that the 
conductivity 0 + 1 has an important role in improving the performance of the bearing 
system. The porosity  has a sharp adverse effect on the performance of the bearing 
system. Figure 3 indicates that the load carrying capacity increases substantially with 
the increasing values of the aspect ratio m. Besides, the load carrying capacity decreases 
with the increasing values of the ratio B/h2. In addition, the combined effect of 
magnetization M and the ratio B/h2 is more sharp as compared to the other 
combinations. 

Figure 4. Variation of load carrying capacity with respect to M and B/h2.

7 
  

0.40
1.40
2.40
3.40
4.40
5.40
6.40
7.40

4.00 6.00 8.00 10.00 12.00

Lo
ad

M

B/h2=10 B/h2=20 B/h2=30 B/h2=40 B/h2=50
 

 
Figure 4. Variation of load carrying capacity with respect to M and B/h2. 

 

0.10
0.60
1.10
1.60
2.10
2.60
3.10
3.60

4.00 6.00 8.00 10.00 12.00

Lo
ad

M

0 0.01 0.05 0.1 0.5
 

 
Figure 5. Variation of load carrying capacity with respect to M and . 

 
 
 Figures 2 to 5 depict the variation of load carrying capacity with respect to the 
magnetization parameter M for various values of conductivity 0 + 1, aspect ratio m, 
the ratio B/h2 and porosity . It is noticed that the load carrying capacity gets increased 
with increasing values of magnetization parameter M. It is also seen that the 
conductivity 0 + 1 has an important role in improving the performance of the bearing 
system. The porosity  has a sharp adverse effect on the performance of the bearing 
system. Figure 3 indicates that the load carrying capacity increases substantially with 
the increasing values of the aspect ratio m. Besides, the load carrying capacity decreases 
with the increasing values of the ratio B/h2. In addition, the combined effect of 
magnetization M and the ratio B/h2 is more sharp as compared to the other 
combinations. 

Figure 5. Variation of load carrying capacity with respect to M and ψ.
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Figures 2 to 5 depict the variation of load carrying capacity with respect 
to the magnetization parameter M for various values of conductivity 
ϕ0 + ϕ1, aspect ratio m, the ratio B/h2 and porosity ψ. It is noticed that 
the load carrying capacity gets increased with increasing values of 
magnetization parameter M. It is also seen that the conductivity ϕ0+ϕ1 
has an important role in improving the performance of the bearing 
system. The porosity ψ has a sharp adverse effect on the performance 
of the bearing system. Figure 3 indicates that the load carrying capacity 
increases substantially with the increasing values of the aspect ratio m. 
Besides, the load carrying capacity decreases with the increasing values 
of the ratio B/h2. In addition, the combined effect of magnetization M 
and the ratio B/h2 is more sharp as compared to the other combinations.
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Figure 6. Variation of load carrying capacity with respect to 0+1 and m. 
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Figure 7. Variation of load carrying capacity with respect to 0+1 and B/h2. 
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Figure 8. Variation of load carrying capacity with respect to 0+1 and . 
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Figure 9. Variation of load carrying capacity with respect to m and B/h2. 
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     Figure 10. Variation of load carrying capacity with respect to m and . 
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Figure 11. Variation of load carrying capacity with respect to B/h2 and . 

 
 
The effect of conductivity 0 + 1 on the load carrying capacity is presented in Figures 6 
to 8. These figures suggest that the conductivity 0 + 1 increases the load carrying 
capacity and this increase is more for smaller values of aspect ratio m, the ratio B/h2 and 
porosity . However, the load carrying capacity is substantially more in the case of the 
ratio B/h2.  Figures 9 and 10 deal with the effect of aspect ratio m on the variation of 
load carrying capacity. It is manifest that aspect ratio m increases the load carrying 
capacity and this increase is more in the case of the ratio B/h2. Lastly, Figure 11 says 
that the combined effect of the ratio B/h2 and porosity  is significantly adverse as the 
load carrying capacity is more decreased at the initial stages. 
 A close scrutiny of these figures reveals that the negative effect of porosity  
and the ratio B/h2 can be compensated up to certain extent by the positive effect of 
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The effect of conductivity ϕ0+ϕ1 on the load carrying capacity is 
presented in Figures 6 to 8. These figures suggest that the conductivity 
ϕ0+ϕ1 increases the load carrying capacity and this increase is more for 
smaller values of aspect ratio m, the ratio B/h2 and porosity ψ. However, 
the load carrying capacity is substantially more in the case of the ratio 
B/h2.  Figures 9 and 10 deal with the effect of aspect ratio m on the 
variation of load carrying capacity. It is manifest that aspect ratio m 
increases the load carrying capacity and this increase is more in the case 
of the ratio B/h2. Lastly, Figure 11 says that the combined effect of the 
ratio B/h2 and porosity ψ is significantly adverse as the load carrying 
capacity is more decreased at the initial stages.
 
A close scrutiny of these figures reveals that the negative effect of 
porosity ψ and the ratio B/h2 can be compensated up to certain extent 
by the positive effect of magnetization M and conductivity ϕ0+ϕ1 by 
choosing suitably the aspect ratio m. It is found that the increased 
load carrying capacity due to the conductivity ϕ0+ϕ1 gets further 
increased due to hydromagnetization. This is crucial for overcoming 
the negative effect of the ratio B/h2 and porosity ψ. A comparison of 
this investigation with the study of (Patel et al., 2010) tends to suggest 
that the overall performance is relatively better here. As can be seen 
from Equations (10) and (12) for friction at the both plates, the friction 
remains unaltered.
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4.0 CONCLUSIONS

It is concluded that the effect of hydromagnetization is comparatively 
sharp unlike some of the previous studies (Vadher et al., 2008), (Patel 
et al., (2010). The analysis incorporated here modifies and extends the 
earlier analysis concerning the performance of a magnetic fluid based 
squeeze film in a short bearing and also presents at least an additional 
degree of freedom to compensate the adverse effect of porosity. 
Furthermore, this investigation offers some scopes for the extension of 
the life period of the bearing system through the observations that the 
bearing with a magnetic fluid can support a load even when there is no 
flow unlike the case of a conventional lubricant. 
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NOMENCLATURE 
 

H Fluid film thickness at any point (mm) 
h1 Maximum film thickness (mm) 
h2 Minimum film thickness (mm) 
B Breadth of the bearing (mm) 
L Length of the bearing (mm) 
m Aspect ratio 
u Uniform velocity in X – direction 
p Lubricant pressure (N/mm2) 
P Dimensionless pressure 
w Load carrying capacity (N) 
W Non-dimensional load carrying capacity 
 Lubricant viscosity (N.s/mm2) 
 Shear stress (N/mm2) 
τ  Dimensionless shear stress 
F Frictional force (N/mm2) 
F  Dimensionless frictional force 

0F  Dimensionless frictional force (at moving plate) 

1F  Dimensionless frictional force (at fixed plate) 
s Electrical conductivity of the lubricant 

M = 
1/2

0 μ
shB 






 = Hartmann number 

K Permeability (col2kgm/s2) 
H0 Thickness of the porous facing 
m* Porosity of the porous matrix 
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*mh

KM1 2
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0h  Surface width of the lower plate (m) 
'
1h  Surface width of the upper plate (m) 

s0 Electrical conductivity of lower surface (mho) 
s1 Electrical conductivity of upper surface (mho) 

0(h) = 
sh
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00  = Electrical permeability of the lower surface 
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