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ABSTRACT 

 

Oscillatory flow is the type of flow found in the greener thermoacoustic based 

technologies. Understanding the behavior of the less understood oscillatory flow 

of this kind is one of the key feature for the success of the system. Heat exchanger 

is one of the important part of the system. In this study, oscillatory flow across 

pile of hot and cold parallel-plates heat exchanger with three different shape of 

edges (i.e. rectangular, round and triangular shape of edges) were investigated. 

A suitable computational model was created in ANSYS. The results were 

compared to theoretical predictions and a good match was found. The study 

shows that the shape of the edge affects the flow and heat transfer of the system. 

A triangle-shaped edges with shorter length provides the higher heat transfer 

between plates and the oscillating fluid compared to plates with round and 

square edges. The results indicated that the entrance effect could be the reason 

for the change of heat transfer performance as the shape of edge changes. 
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1.0 INTRODUCTION 

Oscillatory flow is a cyclic flow found in engineering applications such as reactor and 

thermoacoustic systems. Thermoacoustic has been introduced into the industries for 

centuries. It can convert heat energy to work using thermoacoustic principles. 

Thermoacoustic, as the name goes, uses the combination of thermodynamics and 

acoustic as the working principle. It involves transfer of heat and also acoustical wave’s 

movement. Besides, thermoacoustic also involves density and pressure variations in the 

production of energy process.  

Nicholas Rott is the pioneer in deriving the correct equations for motion, pressure and 

time-averaged in energy transport in a channel with small, sinusoidal oscillations and 

with a temperature gradient (Swift, 2001). This eases the trouble of acoustic study on 

oscillations encountered in engines and refrigerators. Stirling engine century ago 

compromises a lot moving parts. In 1969, William Beale realized that under proper 

circumstances, forces on connecting rods will be small resulting in free-piston.  
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Peter Ceperly, after realizing that time phasing between pressure and velocity in the 

thermodynamic elements of Stirling engine is the same as in acoustic travelling wave, 

suggested on removing every moving part except for the working gas itself. Not long 

after that, the Los Alamos group started their research and development of standing-

wave thermoacoustic engines and refrigerators with different time phasing from 

Ceperly’s idea and Stirling engine (Swift, 2001).  

A thermoacoustic device can work in two ways. One is to produce work using heat and 

is mainly called as prime mover. Another way is to create heat by using work and is 

commonly called as heat pump. Thermoacoustic devices have gained more attention 

mainly due to its independence on moving parts and hence, more efficient. Furthermore 

it can be powered easily with sources such as solar or waste heat and the working 

medium is of environmental-friendly type. Last but not least, the cost of fabrication of 

such device is low and yet it is reliable (Piccolo, 2011). These are just few of the 

reasons why thermoacoustic devices are favorable nowadays. 

The oscillatory flow conditions modelled in the current study will mimic the conditions 

found in thermoacoustic systems. The main working medium behind thermoacoustics is 

a type of flow called oscillatory flow. This flow is formed from sound waves with 

amplitudes high enough to transfer heat from one place to another. On the other hand, 

sufficient high temperature gradient can also create sound waves of reasonably high 

amplitudes. This principle plays an important role because the oscillatory flow will 

move back and forth expanding and contracting in order to do work.  

2.0 LITERATURE REVIEW 

 

Over the years, numerous researches had been carried out in the field of 

thermoacoustics.  The type of fluid flow involved in thermoacoustic device is 

oscillatory flow where the fluid flow travels back and forth. Oscillatory flow can 

enhance heat transfer of a system. This has been proved experimentally and 

theoretically by Volk (2006). This feature is preferable in application such as a prime 

mover because heat is required to be dispersed as fast as possible in order to sustain the 

effectiveness of the prime mover. Heat transfer at the parallel-plates heat exchanger of a 

thermoacoustic system is very important as it will affect performance and efficiency of 

the device.  

 

A simple explanation about devices using thermoacoustics principle may be explained 

with the aid of Figure 1. Generally the thermoacoustic effects occur within an area 

inside the device where structures shown in Figure 1 are placed. The structures, in 

general, contain a pile of solid structure known as ‘stack’. This ‘stack’ is sandwiched 

between a pair of heat exchangers. Thermoacoustic effects occur when the oscillatory 

flow inside the device interacts with the ‘stack’. Depending on the source of energy, the 

interaction between the flowing fluid and the solid surface of the stack may produce 

either cooling effect or power (Swift, 2001).  
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Figure 1. Illustration on position of heat exchangers and stack 

 

The heat exchangers at the ends of ‘stack’ are responsible to effectively remove heat 

from the system and provide cooling capacity to the refrigerated space that is attached to 

the system. On the other hand, if the heat exchangers provide a high enough temperature 

gradient to the fluid, such that allows the fluid particle to excite, power will be 

produced. The energy produced may then be harnessed for other useful application 

(Swift, 2001). 

The challenge in commercializing the thermoacoustic technologies lies, among others, 

on understanding the behavior of the flow and heat transfer phenomena inside the 

system. Current analytical solution used in designing the thermoacoustic system is 

based on a one-dimensional linear model. However, in practical system, the flow may 

consist of irregularities such as natural convection (Mohd Saat et al., 2012), streaming 

and vorticity (Mao et al., 2008). It is pertinent that these effects are investigated so that 

a proper understanding may be gained. This involves the fundamental knowledge of 

oscillatory flow. The study on heat transfer phenomenon in a heat exchanger across 

oscillatory flow is important. There are many types of heat exchanger and the parallel-

plate heat exchanger is one of them. As the geometry of the parallel-plates structure is 

changed, the flow properties near the plates will also change (Irwan Shah et al., 2011). 

This may somehow affect the interactions between the oscillatory flow and the solid 

surfaces. The changing of geometry and the channel dimensions may also create 

disturbances or other effects on the flow. The usual shape of the plates is rectangle with 

sharp edges but what changes may be observed if the shape of the plates is changed for 

example, to rectangle with blunt edges or to other shape?  

Whenever there is flow passing a solid body, a flow pattern such as vortices will be 

generated. Vortex is a mass of fluid or air moving in circular motion due to pressure 

changes. The center of vortex will commonly cause suction to the area around the 

vortex. Von Karman is a type of vortex shedding where detached pairs of vortex appear 

at the back of a bluff body alternately. Alternating vortex shedding has been the main 

cause for the failure of numerous designs. In a study regarding the vortex shedding flow 

patterns, it is said that oscillatory flows past bluff bodies usually gives a more 

complicated flow pattern than the Von Karman type of shedding in steady flows.  
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This is due to the oscillation of the flow that will cause impingement of vertices on the 

body and the interaction with vertices that are generated by the flow when the direction 

of flow is reversed (Shi et al., 2010). In another research, it has been shown that the 

flow pattern of oscillatory flow is more complex compared to those of steady flow. 

Therefore, the knowledge on the flow pattern around the structure of parallel plates is 

essential so that researchers can have clearer idea of the thermoacoustic effect at the 

structure such as stack or heat exchanger (Mao & Jaworski, 2010). 

However, if the geometry of parallel plates and channel dimensions are changed, it may 

cause changes in the flow behaviors such as the boundary layer, viscous and thermal 

penetration depth and also the occurrence of vortex shedding. Boundary layer, a region 

of flow around the surface of parallel plates that may encounter viscous force, may 

bring disturbance to the heat transfer process between the flow and the solid boundaries. 

Difference in the gap dimension will cause the flow behaviors that are affected by 

thermal and viscous penetration depth to be disrupted. If the gap is too large, the 

thermal interaction between the flow and the solid boundaries may be too weak. In a 

study of geometrical optimization of thermoacoustic heat engines, it is shown by 

simulation that by decreasing the stack spacing, all the gas parcels are confined within 

the thermal boundary layer. This allows the gas parcels to interact with the stack and 

eventually increases the performance of the heat engine. However, if the stack spacing 

is decreased, the effect of viscous forces becomes greater causing rise in the viscous 

losses. Unfortunately, this will lower the performance of the heat engine. Therefore, the 

stack spacing needs to be maintained at an optimum level where the thermal effect is 

good whereas the viscous effect is not too strong (Ibrahim et al., 2011). Apart from that, 

the occurrence of vortex shedding at region around the parallel-plates has gained 

attention from researchers too. Few studies have been carried out to determine the effect 

of geometry on the formation of vortices around the stack in thermoacoustic devices. 

The application of oscillatory flow as working medium does not lighten the burden of 

researchers. Instead, the oscillatory flow along with the changes in cross section make 

the flow structures at the end of the stack even more complex (Mao et al., 2008). A 

deeper understanding of the flow throughout the internal structures of the system is 

necessary in order to design a high performance thermoacoustic heat engine. As the 

flow moves to the end of a rectangular plate with sharp edges, flow separation can be 

observed (Mao et al., 2008). When the flow is out of the channel, it may generate 

vortex-like wake which will complicate the flow pattern. Generation of vortices at the 

entrance and exit of the channel will cause the flow energy to dissipate into heat and 

therefore reducing the performance of the thermoacoustic device. 

In this study, a flow pass a pile of parallel-plates acting as heat exchangers will be 

modelled. The fluid will flow back and forth in an oscillatory manner. There will be 

formation of various flow patterns when a fluid flows past the parallel-plates. Besides, 

there is also heat transfer between the two entities since the parallel-plates will be acting 

as heat exchangers. The temperature difference around the plates region will cause the 

occurrence of heat transfer between the fluid and the plates due to the temperature 

gradient. The focus of this investigation is to study how the changes in the plate 

geometry (shape of edges of the parallel-plate) may disturb or affect the flow and heat 

transfer across a parallel-plate heat exchanger.  
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3.0       COMPUTATIONAL MODELLING 

 

The domain used in this study is a simplified model for parallel-plates heat exchangers. 

The dimensions of the domain are set in accordance to Mohd Saat and Jaworski (2013) 

in order to facilitate the validation of the model. The length of the horizontal walls is set 

to be 600 mm while the height is set to be 132 mm. The total length of the parallel-plate 

structure is 70 mm. Hot heat exchanger is represented by half of the length of the 

parallel-plate, that is 35 mm. The other half of the parallel-plate represents cold heat 

exchanger. The parallel-plates have thickness of 3.2 mm with 6 mm wide gap between 

the plates. The pile of parallel-plates is located at 265 mm from the inlet and 23 mm 

from the bottom wall. There are a total of 10 plates in parallel arrangement. The side of 

parallel-plates in red represents the hot heat exchanger while the side in blue represents 

cold heat exchanger.  

 
Figure 2. Illustration of the computational domain and its dimensions 

 

The model was solved using a pressure-based solver. A transient solver was selected to 

model the cyclic nature of the oscillatory flow. The effect of gravity was also turned on 

to correctly model natural convection due to the presence of the hot plate. Taking 

upwards direction as positive, acceleration in y-direction was set to be -9.81 m/s
2
 which 

is the gravity acceleration. Heat transfer was modelled using two-dimensional energy 

equation with the consideration of viscous dissipation. This is to ensure that heat 

transfer process within the plates and nearby areas are modelled correctly. For the 

pressure-velocity coupling, SIMPLE algorithm was chosen. Nitrogen gas was selected 

as the working medium of the domain. The gas was modelled as compressible flow. The 

thermal conductivity of the gas was set as temperature-dependent following the 

equation proposed by Abramenko et al., (1992). The boundary conditions of the 

computational domain were calculated using lossless equation as shown in Equations 

(1) and (2) (Mohd Saat & Jaworski, 2013). 

                                                P1 = Pa cos(kax1) cos(2πft)                            (1) 

                                           m1 = (Pa/c) sin(kax2) cos(2πft+ө)                   (2) 

The term Pa is pressure at pressure antinode, ka is wave number and c is the speed of 

sound with a value of 353 m/s. The value of x1 is 4.23 m and x2 is 4.83 m.  
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The flow amplitude modelled in this study is for the drive ratio of 0.3%. The drive ratio 

is defined as the ratio between pressure at antinode and the mean pressure. The mean 

pressure was set as atmospheric pressure. The wave number, ka, was calculated as 2/, 

where =c/f is the wavelength. The frequency, f, of the flow was set to be 13.1 Hz. The 

phase, , between outlet mass flux, m1, and the inlet pressure was set to 90 so that the 

flow is in standing wave mode. The simulation was run for a minimum of 40 cycles so 

that the simulation reached a steady oscillatory flow condition. 

Figure 3 shows the sketch of the parallel-plate heat exchanger used in this study. The 

original model has a rectangular shape of edge. Case 1 has a round shape of edge, while 

Cases 2 and 3 have a rectangular shape of edges. However the rectangular shape of 

edges in Cases 2 and 3 are different in sizes.  Case 3 has the longest horizontal distance 

because the distance from the original edge to the tip of triangle is two times of that for 

Case 1 and Case 2. Note that the total length of all the four cases investigated are 

slightly different. However, the total area of hot and cold plates (for the calculation of 

heat) four all the four cases are the same. The mesh numbers and sizes for these three 

cases were adjusted so that suitable meshing can be acquired. The configurations for 

solver settings for these three cases are the same as the configurations used for the 

original model. 

 

 
 

Figure 3. Geometry of simulation models with different geometries 

 

4.0 MODEL VERIFICATION 

 

The model was verified by comparing the axial velocity changes over time at point ‘m’ 

(please refer to Figure 2 for the location of ‘m’) between the results from simulation and 

the results from theoretical calculation using Linear thermoacoustic model as reported 

in Swift (2001). The velocity magnitudes of this oscillatory flow were recorded for 20 

phases within one flow cycle. Figure 4 shows that the velocity increases from phases 1 

to 5 and then decreases as it flows until phase 10. The fluid starts reversing after phase 

10 with an increase of reverse velocity magnitude until phase 15. After that, the velocity 

of the reverse flow decreases and the flow will repeat with a new cycle after phase 20. 

As shown in Figure 4, a good match was found between the results and the theoretical 

predictions.  
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A closer look will reveal that the simulation results differ slightly from theory 

particularly between phases 4 to 10. The maximum percentage of error between the 

theory and results from simulation was determined to be 2.48% which is still 

acceptable. Thus, this simulation model was considered acceptable and can be used for 

simulation of the other models with different plate geometries. 

 

 
 

Figure 4. Changes of x-velocity of point ‘m’ at different phases 

 

Figure 5 shows the grid sensitivity test for this study where the simulation was run using 

another model with higher number of meshes. It can be seen that with higher number of 

meshes, deviation occurs between phases 4 to 12. The greatest deviation occurs at phase 

9 with a percentage error of 8 percent. This indicates that with different number of 

meshes, the results obtained from this study may slightly differ. However, the model 

with the most appropriate number of meshes was already selected for this study so that 

the curve obtained will be similar to that predicted by theoretical calculation. 

 

 
 

Figure 5. Grid sensitivity test 
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5.0 RESULTS AND DISCUSSIONS 

5.1 Comparison of vorticity contours near the edges 

Figure 6 shows that the vortex pair formed at the end of plate for Cases 2 and 3 are 

more symmetry compared to the other two cases. This indicates that flow is less 

disturbed at the end of plate when the edge is made in triangular shape. The existence of 

two layers of vorticity adjacent to the wall within the channel indicates that rotational 

flow occurs near the plate. This is a typical phenomenon for oscillatory flow where fluid 

flows back and forth in a cyclic manner. At phase 10, the flow is about to reverse. This 

explains the existence of the two layers of vorticity with different signs at locations near 

the wall. In overall, the strength of the second layer of vorticity away from the wall is 

stronger for Cases 1, 2 and 3. The flow was able to enter the channel smoothly for the 

three different shape of edges for Cases 1, 2 and 3. Thus, the stream of vortices for all 

the models other than the original model flew smoothly into the channel at phase 10. 

However for the original model, the second layer of vorticity is weak. This indicates 

that the flow was slightly disturbed hence showing signs of vortices discontinuities 

when the flow was heading into the channel from the right side. 

 

 

 
 

 

Figure 6. Vorticity contours near the edges of all the models at phase 10 

 

Unfortunately, for 0.3 percent drive ratio the flow tend to be laminar. Hence the 

differences in shape of vortices at the edges between the models cannot be seen clearly. 

If the models were to be simulated with turbulent flow, such as at higher drive ratio, the 

differences could be clearer and easier to be observed. 
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5.2 Comparison of average total surface heat flux between all cases 

 

The effect of edge shape on the heat transfer performance of the parallel-plate heat 

exchanger is examined by looking at the total surface heat flux gained at the heat 

exchanger’s plate. Heat flux at the surface is defined as: 

 

                                                               dy

dT
kq 

 (3) 
 

The terms q, k, T and y are the heat flux, thermal conductivity of the gas medium, 

temperature and vertical distance from the surface of the plate, respectively. The total 

surface heat flux for all cases presented in Figure 7 was calculated based on an area-

weighted average of the heat which was also averaged over one flow cycle.  

 

 
 

 

Figure 7. Average total surface heat flux at hot heat exchangers for all 

cases 
 

 

It is clearly shown in Figure 7 that Case 2 has the highest average total surface heat flux 

over time at the hot heat exchangers surfaces compared to the other 3 cases. With 

reference to Figure 3, Case 2 was defined as the parallel-plate structure with a triangular 

shape of edge. Case 2 recorded a value of 12.6274 W/m
2
 while the lowest value of 

average total surface heat flux recorded is from Case 1 with only 10.8627 W/m
2
. The 

original model and Case 3 have almost the same value with original model being 

slightly higher than Case 3. The heat energy transfer rate at hot heat exchangers surfaces 

for Case 2 has shown huge increment after the alteration in the geometries of the edge 

of the parallel-plates. This is probably due to the change of flow structure within the 

layer which enhances the heat transfer at the plate.  
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5.3 Comparison of total surface heat flux between all cases 

 

Detail analysis could be done by looking at the local heat flux values at several 

locations from the entrance of the left end of the parallel-plate structures as illustrated in 

Figure 8. As shown in Figure 8, the location for points ‘A’, ‘B’ and ‘C’ are 270 mm, 

280 mm and 290 mm respectively from the left end of the computational domain.  
 

 
 

Figure 8. Location of point ‘A’, ‘B’ and ‘C’ 
 

Note that the illustration in Figure 8 is represented using an enlarged view of just one 

pair of parallel-plate structures. The total number of plates in the real domain was as 

reported in Figure 2. The locations of points ‘A’, ‘B’ and ‘C’ are the same for all the 

models and the points are located on the hot heat exchanger side. Figure 9 shows the 

variation of local heat flux measured at location ‘A’ over twenty phases within one flow 

cycle. Location ‘A’ is located near the left entrance and far from the joint between the 

hot and cold plates. Case 2 which has a triangle-shaped edges with shorter edge length 

has the highest local surface heat flux at point ‘A’ for most of the phases. This could be 

related to the change of entry length due to the change of edge’s shape. Mohammed and 

Salman (2007) proposed in their experimental study that as the entrance section length 

becomes longer, heat transfer decreases. This is probably caused by the resistance 

exerted from the flow as the entry length increases. Based on this argument, Case 2 with 

the highest value of local surface heat flux seems to have the shortest entry length 

presumably due to the less flow disturbance at the edge. As mentioned earlier, flow 

across original model seems disrupted particularly at the edges because of the 

rectangular shape of the edges. The triangle shape of edge has smaller form drag 

compared to rectangle shape of edge. Hence, the triangle shape of edge of Case 2 

provides a smoother path for the fluid to oscillate. As a result, a better heat transfer 

through point ‘A’ is possible. However, if the triangle edge is made longer (Case 3) the 

heat flux drops. The results shown in Figure 9 also shows that the heat flux values for 

round edge (Case 1) are also consistently smaller than Case 2 and original model. The 

reason for this is not clear but could be related to the effect of the viscous and thermal 

boundary layers which may change as the fluid flow through the edge with different 

shape. Furthermore, the performance of heat transfer can also be greatly affected by 

vortices (Shi et.al., 2010). A deeper study in this area may be needed to help understand 

this phenomena. 
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Figure 9. Local surface heat flux at point ‘A’ for all the cases 
 

Figure 10 shows the local heat flux at location ‘B’. Location ‘B’ is located somewhere 

midway between the left entrance and the joint between the cold and hot plates. It is 

noteworthy that the temperature gradient at the joint between the cold and hot plates is 

very high. Since point ‘B’ is located midway between the left end and the joint, the 

thermal and viscous layer at this point are expected to be less affected by the entrance 

effect and the effect of temperature gradient at the joint. This effect could be seen in the 

original model, Case 2 and Case 3 which have recorded only slight fluctuations of local 

surface heat flux throughout the phases. However, Case 1 showed significant 

fluctuations of values for local surface heat flux at point ‘B’. Case 1 which has round-

shaped edges also has the highest value of local surface heat flux at almost all phases. 

This indicates that the viscous and thermal layer of Case 1 are not as steady as the other 

three cases even at locations away from the entrance and the joint. 

 

 
 

Figure 10. Local surface heat flux at point ‘B’ for all the cases 
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Figure 11. Local surface heat flux at point ‘C’ for all the cases 

 

Figure 11 shows the local heat flux at location ‘C’. Location ‘C’ is located near the joint 

where temperature different between the hot and cold plates is high. According to 

Figure 11, both Case 1 and Case 2 showed similar results. The curves for both cases are 

almost similar for all the phases. Local surface heat flux at point ‘C’ for Case 3 also 

showed minor fluctuations throughout the phases. This fluctuations are very small. The 

original model, however, showed huge fluctuation of values of local surface heat flux 

through the entire phases. The curve for original model showed uphill and downhill 

trend several times. This indicates that the original model felt the effect of the 

temperature gradient the most. The rectangular-shaped edge alters the condition of flow 

at this point so that the temperature gradient at the joint has the greatest influence on 

heat transfer at point ‘C’. The results presented in Figures 10 to 11 indicate that the high 

value of total heat flux for Case 2, as presented in Figure 7 may be due to the influence 

of entrance length. This is based on the high value of heat flux for Case 2 at location ‘A’ 

as presented in Figure 9. Other fluctuations of local heat flux value at points ‘B’ and ‘C’ 

seem to have minor effect on the total heat flux.  

5.4 Comparison of average totral surface heat flux between all cases 

 

Velocity profile near the entrance at point ‘A’ (refer Figure 8 for point ‘A’) is compared 

between all the cases. A vertical line was created from point ‘A’ to the bottom surface 

of the parallel-plates above point ‘A’. The line connects the two parallel-plates and axial 

velocity data can be extracted through the line. The data were extracted at phase 5 

where the fluid flows forward at maximum velocity and phase 15 where the maximum 

velocity of the reverse flow is achieved. The size of gap between the parallel plates is 6 

mm. Therefore the value of 0.006 m in Figure 12a and Figure 12b is the distance from 

point ‘A’ to the bottom surface of the parallel-plates heat exchanger above it. 
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 (a) (b) 

 

Figure 12. Velocity profile for all the cases at location ‘A’ for (a) phase 5 

and (b) phase 15 

 

Figure 12 shows the velocity profiles for all the cases at phases 5 and 15 when the flow 

is at the highest value of magnitude during the first half and second half of the cycles, 

respectively.  The velocity profile at phases 5 and 15 for original case is symmetry. 

They have a form closest to the fully developed flow profile. All other cases presented 

asymmetry velocity profiles between the two stages of the flow cycle. At phase 5, the 

velocity boundary layers of the other 3 cases seem not yet reaching the fully developed 

profile. These behaviors may be related to the entrance effect. However when the flow 

reversed its direction at phase 15, the velocity profile for most of the cases are similar 

and the profiles are more fully-developed like. When the flow reversed its direction, it 

entered the channel from the cold heat exchanger sides. During this part of a flow cycle, 

the flow have already travelled for a certain distance before it reach point ‘A’. Thus, the 

velocity boundary layer for all the cases have developed fully forming the fully-

developed shape of velocity profile as seen in Figure 12 (b). 

6.0 CONCLUSIONS 

The flow and heat transfer of the validated original model were analyzed and compared 

to the results of the other three cases with different shape of plate edges. At the low 

drive ratio investigated in this study (0.3% drive ratio), the vortex structures at the end 

of the plate are slightly different from one case to another as the shape of edge changes. 

The difference is not so big due to the laminar feature of the low drive ratio 

investigated. As drive ratio increases the vortex pattern is expected to be more 

complicated. Future work should look into this matter closely. It is expected that the 

edge shape will give a more significant impact on the vortex pattern when fluid 

oscillates at higher drive ratio. The results also showed that the heat transfer 

performance may be different if the shape of edges are different. This study suggested 

that a triangle-shaped edges with shorter length provides the higher heat transfer 

between plates and the oscillating fluid. The results of the local heat transfer 

investigation and velocity profiles shown at point ‘A’ suggest that the increase of heat 

may be related to the entrance length which was altered due to the change of shape of 

edge. However, deeper investigations are needed so that a better understanding could be 



Journal of Mechanical Engineering and Technology 

90                       ISSN: 2180-1053         Vol. 8 No.1       January – June 2016                           

 

gained about the viscous and thermal boundary layers influence on the flow and heat 

transfer of an oscillatory flow across the parallel-plate structures. 
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