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ABSTRACT 

 
A solution procedure is described for determining the two-dimensional and two-

degrees of freedom flutter characteristics for wings at large angles of attack. 

This procedure requires a simultaneous integration in time of the solid and fluid 

equations of motion. The fluid relations of motion are the unsteady, compressible 

Navier-Stokes equations, solved implicitly by second-order Roe’s approximation 

scheme in a moving coordinate system. The solid equations of motion were 

integrated in time by use of fourth-order Runge-kutta method. In this paper, the 

stall flutter of a rectangular wing with section of NACA 0012 is studied. 

Therefore, the aeroelastic responses for the system were calculated by applying 

mode shapes for vibrating wing. Then the obtained responses resulted from 

several changes in leading edge shape of wing are compared. Results showed 

that these different leading edge shapes cause the changes on oscillating 

parameters of the system. In these changes, applying a camber with 25
o
 angle 

had the best result in this study. 

 

KEYWORDS: Stall flutter; Navier-Stokes equations; Leading edge shape; Aeroelastic 

responses; Mode shapes. 

 

 

 

 

1.0 INTRODUCTION 

 

Aeroelasticity is defined as the interaction of aerodynamics, elasticity and dynamics. 

Classical theories of aeroelasticity assume that the aerodynamic and structural forces are 

linear. For many decades, the classical approach has been successful in providing 

approximate estimates of aircraft response to gusts, turbulence and external excitation. 

The flutter boundaries are often quite accurately predicted when compared to flight test 

results. On the other hand, these classical methods are unable to capture phenomena 

arising from structural and aerodynamic nonlinearities. 

 Aerodynamic nonlinearities are often encountered at transonic speeds or high 

angles of attack where flow separation occurs (Ghadiri & Razi, 2007). Flutter 

phenomenon is a kind of dynamic instability that results from the interaction of inertia, 
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elastic and aerodynamic forces and causes the vibration of the wing to diverge. At 

transonic and supersonic regime, the shock wave incidence affects the oscillating 

parameters of the system, because this event can alter generalized forces, which operate 

on the system and at high angles of attack the flutter encounters a phenomenon which is 

called dynamic stall. Dynamic stall is a phenomenon caused by vortex shedding on the 

surface of oscillating airfoils at high angles of attack. This causes a huge decrease in lift 

and increase in drag force and pitching moment too. If, during part or all of the time of 

oscillation, the flow was separated, then the flutter phenomenon exhibits some different 

characteristics and is called stall flutter (Fung, 2007). 

 In past decades existing analytical tools for the prediction of stall flutter treated 

this problem as a fluid-structural interaction problem. Since the unsteady aerodynamics 

associated with this phenomenon is complex, researchers have in the past relied on 

experimental data for airfoil static and dynamic characteristics. These data are usually 

synthesized from a series of analytical expressions for different parts of the dynamic 

stall loop and used in a flutter analysis (Jiunn-Chi, Kaza & Sankar, 1987). 

 The fluid-structural equations can be integrated in time simultaneously. The 

aerodynamic loads determined from the integration of the unsteady, compressible 

Navier-Stokes equations, drive the structural dynamics equations. The results of 

structural deformations alter the aerodynamic loads. Under certain conditions, the 

coupling between the aerodynamic loads and the structural motion by imposing small 

disturbances on the wing angle of attack cause the aeroelastic responses grow rapidly in 

a divergent oscillatory fashion, and finally, flutter occurs. 

 There are many studies of stall flutter at high Reynolds numbers starting from 

about 1950. Maybe, the most detailed of the former investigations are those of Halfman, 

Johnson & Haley (1951) and Rainey (1958). In these studies, the wing was placed at a 

mean angle of attack and then forced to vibrate, either in pitch or heave. One of the first 

stall flutter analyses using numerical solution of navier-stokes equations carried out by 

Jiunn-Chi et al. (1987). They studied NACA 0012 airfoil flutter by simultaneous 

integration in time of the solid and fluid equations of motion at high angles of attack. 

Price & Keleris (1955) investigated NACA 0012 airfoil flutter by applying nonlinear 

effects of aerodynamic loads at stall angle of attack by using semi-experimental 

methods. More recent studies such as Razak, Andrianne & Dimitriadis (2011) have 

performed PIV
1
 measurements for an elastically mounted wing undergoing stall flutter. 

The wing was free to move in pitch and Heave, but they observed that in stall flutter the 

pitching mode was predominant. An analysis based on modified Leishman-Beddoes 

model at low mach number was carried out by Song, Qinghua, Chenglin & Xianping 

(2011). The main modifications for L-B model included a new dynamic stall criterion 

and revisions of normal force and pitching moment coefficient. Bhat & Govardhan 

(2013) experimentally studied the stall flutter boundaries of a NACA 0012 airfoil at low 

Reynolds numbers by measuring the forces and flow fields around the airfoil when it is 

forced to oscillate. These measurements indicated that for large mean angles of attack of 

the airfoil, there is positive energy transfer to the airfoil over a range of reduced 

frequencies, indicating that there is a possibility of airfoil excitation or stall flutter. Sun, 

Haghighat, Liu & Bai (2015) developed a nonlinear time-domain aeroservoelastic 

model to study stall flutter and design flutter suppression control systems. A review 

                                                           
1 Particle Image Velocimetry 
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research for Nonlinear flutter wind tunnel test and numerical analysis of folding fins 

with freeplay nonlinearities was performed  by Ning, Nan, Xin & Wei (2016). 

 The scope of the present work is to find a way for delaying of stall flutter effects 

by limiting the vibration amplitudes of the wing. One of the ways is the eliminating of 

stall by moving forward the leading edge separation point. By modifying the leading 

edge shape, we can alter the position of flow separation on the airfoil surface. 

In this study, Raynolds Average Navier-Stokes (RANS) equations with two-DOF 

structural dynamics model of wing are solved simultaneously in a moving 

computational grid by writing a computer code. The RANS equations are applied on a 

full unsteady turbulent compressible flow. For this purpose, the turbulent shear stresses 

were modeled by using an eddy viscosity concept. In this study, the Spalart-Allmaras 

one-equation model is used because of its adequate accuracy for flows with adverse 

pressure gradient (Blazek, 2001). Generally, the solution procedure is that the 

aerodynamic loads obtained from the solution of the RANS equations were placed into 

the solid equations of motion in each time step. Then, the aeroelastic responses and the 

new velocities of moving grid will be achieved. These values will be used in the fluid 

flow equations for new time step.   

 Since there is a need to carefully validate any aerodynamics model prior to its 

application to flutter calculations, a number of code validation studies are first 

presented, including some cases where deep dynamic stall and stall flutter occurs. 

Following the code validation, the studies on leading edge modifications are presented. 

 

 

2.0 MATEMATICAL AND NUMERICAL FORMULATION 

 

2.1       Flow-field Equations 

 

In this section, according to Jiunn-Chi et al. (1987), the numerical procedure used to 

compute the unsteady viscous flow is briefly described.  In the (x,y,t) coordinate 

system, the two-dimensional, unsteady Navier-Stokes equations may be written as 

 

                                              

v vF GU F G

t x y x y

   
   

      

                                    (1) 

 

Where U is conservative variables vector, F and G are convective flux vectors and Fv 

and Gv denote viscous term vectors, which may be written as 
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E is the total energy per unit volume and is defined as 
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2 2

1 2

p u v
E 



 
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  
                                           (3) 

 

The shear stress components are expressed as 
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                                       (6) 

 

where μ and μt represent the dynamic viscosity and turbulent addy viscosity, 

respectively. All the calculations were performed in a transformed coordinate system 

(ξ,η,τ), which is linked to the physical plane (x,y,t) according to the following 

relationship: 

                                             
   , , ; , , ;x y t x y t t                           (7) 

 

The Jacobian of transformation J is given by 

 

                                                            

1
J

x y y x   




                                                (8) 

 

and the metrics of transformation are given by 

 

   ; ; ; ; ;x x t tz z
t t t ty x y x x y x y x y x y

J J J J J J
       

    
            (9) 

 

ξt and ηt include the grid points velocities in the coordinate system. 

In the (ξ,η,τ) coordinate system at non-dimensional form, the two-dimensional, unsteady 

Navier-Stokes equations may be written as 

 

                                         

* ** * *

Re

v vF GMU F G

    

    

    
     

 (10) 

 

where M∞ and Re denote the free-stream mach number and Reynolds number, 

respectively. the quantities F
*
, G

*
, Fν

*
 and Gν

*
 are given by 
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           (11) 

 

Above equations are discretized using an implicit, finite-volume scheme based on Roe’s 

second-order approximate Riemann solver (Blazek, 2001). 

 

2.2       Dynamic equations of wing 

 

Resisting elastic forces are developed that are proportional to the airfoil torsional and 

translational displacement. In Figure  1, a sketch of the two-DOF rectangular cantilever 

wing is shown. Note that the pitching axis may offset from the center of mass of the 

wing, leading to a coupling between the pitching and heaving degrees of freedom. The 

governing equations of the two-DOF system motion are (Fung, 1945): 

 

                                    

2 2 4
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
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                              (12) 
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h
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  

     
   

   
                              (13) 

 

where y is the coordinate axis along the wing, h is the wing vertical displacement, α the 

angular displacement (angle of attack), Iα the wing section moment of inertia (per unit 

span) about the pitching axis, m and Sα=mxα the mass and static moment per unit span, 

and Ch and Cα the structural damping for the pitching and plunging motion coefficients, 

respectively. The EI and GJ are the torsional and bending stiffnesses, respectively. The 

Sα depends on the offset between the wing pitching axis and the wing center of gravity. 

The lift force (L) and pitching moment (ME.A) are calculated by following relationships: 

 

                                                

    dspL yyyxyx                                          (14) 

                                                 

   dLxxM AEAE ..                                                    (15) 

 

where ds is the surface element. p, τxy and τyy are calculated by solving the unsteady, 

compressible Navier-Stokes Equation (10). 

 

 
Figure 1. Schematic diagram of the two-DOF system 

 



Journal of Mechanical Engineering and Technology 
 

 

 

 

46                         ISSN: 2180-1053         Vol. 8 No.1       January – June 2016                               
 

The partial differential Equations (12) and (13) are solved based on Galerkin’s method. 

For this purpose, the h and α can be decomposed to product of two independent 

variables as follows: 

 

                                                           
  1( )h h t

                           
 (16) 

                                                           
  1( )t  

      
                                           (17) 

 

More details of above method are found in (Hodges & Pierce, 2002). 

Φ and Ψ are the torsional and bending mode shapes for vibrating wing and can be 

written as (Marzocca, Librescu & Silva, 2002); 
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                (18) 

                                                         2 2sin( )K                                                       (19) 

 

where K1 and K2 are constant coefficients and, β1=0.5969π, β2=0.5π and η=y/l. 

By replacing the Equations (16) and (17) into the Equations (12) and (13) the non-

dimensional forms of wing equations of motion can be written as below: 
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(21) 

 

where: 

 

  

1 1 2
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Ih A EI A GJ m
H t r

b A ml A I l b mb


  



    


     

   

(22) 

 

The symbol apostrophe used in Equations (20) and (21) represents derivative with respect to τ 

and the coefficient A1 to A7 are constant values that obtained from vibrating mode 

shapes where are determined in appendix. In order to reach aeroelastic responses, first 

the lift force and pitching moment will be obtained at each time step by solving the 

Navier-Stokes equations, then by placing them into the Equations (20) and (21) the new 

values of h1 and α1 will be calculated. Consequently, the flow conditions will be 

determined for next time step. We can see that the variables  fo Equations (12) and (13) 

will be updated at each time step. Thus, these equations are fully unsteady. Figure 2 

shows a flowchart of this solution procedure. In the present work, the Equations (20) 

and (21) era integrated in time using a fourth-order Runge-kutta method and the 

aeroelastic responses are calculated at the end of the wing where y=l (or η=1). 
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Figure 2. Solution procedure flowchart 

 

 

3.0 RESULTS AND DISCUSSIONS 

 

3.1       Code Validation Study 

 

Before the application of this computer code in flutter applications, the flow solver was 

extensively calibrated for a number of test cases. In this work, only a few of these 

studies are reported. A 575×81 C-type grid with excellent orthogonality was used in this 

study which is shown in Figure 3. 

 

 
 

Figure 3. View of C-type grid used in flow computations 
 

In Figure 4, the surface pressure distribution for a NACA 0012 airfoil at 11.0264 deg 

angle of attack is shown. The free-stream Mach number and Reynolds number were 

Solve RANS equations and obtain L and ME.A  

 

Put L and ME.A in structural equations   

 

Solve structural equations and obtain h, α,  

 

Add α to wing angle of attack   

 

Obtain computational grid velocities using   

 

Go to new time step 
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0.301 and 3×10
6
, respectively. For comparison, experimental data obtained by Charles, 

Acquilla & William (1987) are also shown. The present results and the experiments are 

seen to be in good agreement everywhere. 

 

 

 
 

 

Figure 4. Comparisons of theory versus experiment for the surface 

distribution over a NACA 0012 airfoil at 11.0264 deg angle of attack (M∞ 

= 0.3, Re = 3×10
6
) 

 

In order to illustrate the capability of the Navier-Stokes solver to obtain time-accurate 

results in highly separated flow, the lift, drag, and moment hysteresis loops are shown 

and compared with experiments (McAlister, Carr & McCorosky, 1982) in Figure 5 for a 

NACA 0012 airfoil oscillating in pitch. The mean angle and amplitude of oscillation 

were 14.91 and 9.88 deg, respectively. The reduced frequency of oscillation, normalized 

with respect to the half-chord, was k=0.151. The free-stream Mach number and 

Reynolds number were 0.283 and 3.45×10
6
, respectively. It is seen that the theory 

correctly predicts the near linear increase in lift during the upstroke, the dynamic stall 

causing rapid variations in lift, drag, and moment alike, and the poststall recovery phase 

of the flow during the downstroke. The fact that the flow solver is able to capture much 

of the dynamic stall flow features increases the confidence in the capability of this code 

to handle stall flutter problems. It must be mentioned that use of wall function approach 

for turbulence modeling could not be accurately reliable in this study. Because the law 

of wall doesn’t always hold for flow near solid boundaries, most notably for separated 

flows (Wilcox, 1994). 

 

Experiment (Charles et al., 1987)  

 
Present study 
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Figure 5. Comparisons of theory and experiments for the unsteady airloads 

on a NACA 0012 airfoil experiencing dynamic stall (M∞ = 0.283, Re = 

3.45×10
6
, k = 0.151). 

 

As a final test of the above solver's ability to handle aeroelastic responses manner, the 

stall flutter calculations by use of the Navier-Stokes/structural dynamics solver 

explained above were considered. In this test case, the starting point was the steady 

viscous flow over a NACA 0012 airfoil at 0.3 Mach number and 9×10
6
 Reynolds 

number at 15
o
 angle of attack. At this angle of attack, the airfoil is on the verge of stall. 

The airfoil was given a small amplitude perturbation in its angle of attack and the 

subsequent motion was obtained. The pitch and heave responses are plotted as a 

function of non-dimensional time and are compared with obtained results performed by 

Jiunn-Ch et al. (1987) as shown in Figure 6. Very good agreement is observed between 

the two solvers. It was found that the airfoil returned to steady state following a period 

of damped oscillations. The non-dimensional aeroelastic parameters are assigned as 

below: 

0 00.2, 0.25, 100, 51.5, 0.5, 15 , 0.25h x r h b               
 

 
Figure 6. Time response of a two-degree of freedom solid-fluid system 

experiencing stall flutter (NACA 0012 airfoil, M∞ = 0.3, Re = 9×10
6
, 

initial angle of attack 15
o
) 

 

3.2       Flutter Calculations 
 

We use the current unsteady solver in the mentioned fluid-structure interaction method 

for the two-dimensional NACA 0012 wing section. This model simulates the bending 

and torsional motion of the wing. It consists of two degrees of freedom, heaving and 

pitching, for a NACA 0012 wing section. Figure 7 shows the variation of flutter speed 

Jiunn-Chi et al. (1987) 

 

Present 

Experiment (McAliste 

et al., 1987)  
 

Present study 
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index versus the freestream Mach number (M∞) for inviscid flow. Flutter speed index 

includes the parameters which are affected on flutter incidence and is defined as 

(Kirshman & Liu, 2006) 

                                                           

 

 
f

f

f

U
V

b  


                                                    (23) 

 

where (U∞)f and (ωα)f are the values leading to happening flutter. The non-dimensional 

aeroelastic parameters are assigned as 
 

0 00.5; 0.25; 26.35; 0.5; 1 ; 0.1h x r h b            
 

It is seen that by increasing the freestream Mach number, the flutter speed is reduced. 

Also, at transonic speeds the curve slop is increased and clearly, the system stability will 

be lower than subsonic one.  

 

 
Figure 7. Variation of flutter speed index versus Mach number 

 

 

3.3        Leading edge modifications 
 

In this section, we attempt to find a way to limit the stall flutter phenomenon. The most 

effective factor in this kind of flutter is dynamic stall incidence, which alters the 

aerodynamic loads. Dynamic stall is a phenomenon caused by vortex shedding on the 

surface of oscillating wings at high angles of attack. This causes a huge decrease in lift 

and increase in drag force and pitching moment. Therefore, by eliminating of dynamic 

stall, we can suppress the stall flutter. One of the most effective portions of the wings on 

flow separation is the leading edge. By modifying the leading edge shape, we can alter 

the position of flow separation on the wing surface. We applied several modifications 

on the leading edge shape of the NACA 0012 wing section and compared the aeroelastic 
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responses, lift and pitching moment coefficients with the standard case. The following 

values are selected for the non-dimensional aeroelastic parameters:  

6

0 0

0.5; 0.25; 100; 51.5; 0.5

0.4; Re 2.5 10 ; 15 ; 0.25

h x r

M H

      



    

    
 

 
In the first case, we increased the sharpness of the leading edge and then solved the 

aeroelastic equations. In Figure 8, the results are compared to the standard leading edge 

shape. The vibration amplitude has been reduced in heave motion; although the pitch 

amplitude is rising in compare to the standard case responses. Therefore, this change 

could not be suitable. 

 

 

 

   
 

 

Figure 8. Comparisons of sharped versus standard leading edge for 

aeroelastic responses 

 

The second case involves a comparison of blunted versus standard NACA 0012 leading 

edge for the aeroelastic responses with same parameters as shown in Figure 9. We can 

see that by increasing the leading edge thickness, the vibrations amplitudes have been 

descended. The reason is that the leading of the relocation of separation onset toward 
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the trailing edge as shown in Figure 10. By moving forward the separation onset point, 

the vortex growth opportunity will be reduced. Also, the separation in blunted leading 

edge occurs at the higher angle of attack than the standard one; consequently, the stall 

will exist in smaller regions. 

 

 

 

 
 

 

Figure 9. Comparisons of blunted versus standard leading edge for 

aeroelastic responses 

 

 

      
 

 

0.07 

c 0.14 c 

α=21.5
ᵒ
 α=24.5
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Figure 10. Comparisons of blunted versus standard leading edge for 

separation onset 

 

 

 
 

Figure 11. Comparisons of small cambered versus standard leading edge for aeroelastic 

responses 

 

For the next case, a small camber in leading edge is applied (Carr, McAlister & 

McCorosky, 1977). In Figure 11, the results with same parameters are compared with 

the standard leading edge shape. It is seen that the amplitudes are decreased. Because, in 

this case, the stall depth has been reduced. At the last case, we applied a camber with 

25
o
 angle on the leading edge where in Figure 12, the results with same parameters are 

compared with the standard leading edge shape. By observing the results, the reduction 

of amplitudes is determined. Figures 13 and 14 show the flow field for some positions 

of the wings in a period of vibrations in two cases of standard and 25
o
 cambered leading 

edge. It can be seen flow separation condition changes by cambering of leading edge 

Angle of attack as positive and negative, changes in each period on these vibrations. 

Since in two last cases downward cambering of leading edge tend to delay in flow 

separation on positive angles of attack and vice versa. Since the initial angle of attack is 

15
o
, there is not any separation at the beginning unless angle of attack was negative, 

flow separation had occurred slightly; however, when it is positive again, separation 

disappeared. It can be observed that there is not any deep stall in the flow field until the 

end of vibrations. 
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Figure 12. Comparisons of 25

o
 cambered versus standard leading edge for aeroelastic 

responses. 

 

 

 
Figure 13. Flow field for Standard NACA 0012. 
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Figure 14. Flow field for 25

o
 cambered NACA 0012 leading edge 

 

 

CONCLUSIONS 

 

The turbulent compressible flows were solved in the time domain. With existence of 

dynamic stall, the amplitude and frequency of responses has been affected. It was 

observed that by producing a camber on the leading edge the flutter onset had been 

delayed. Because the stall depth was reduced at lift force and pitching moment. 

Specially applying a camber with 25
o
 angle had the best result in this study.  It should 

be noted that the changes of leading edge could affect in flutter decreasing greatly, but 

in some cases (for example: cambering over of leading edge) these changes could 

eliminate aerodynamic properties of wing. 

 

APPENDIX A 

 

By replacing the Equations (16) and (17) into the Equations (12) and (13), based on 

Galerkin's method, the space dependent terms will appear to integral relations and 

respect to the wing geometry, will have constant values where form coefficients A1 to 

A7. These values have been obtained as 
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NOMENCLATURE 

 
b Semichord length rα   Radius of gyration about elastic axis 

c Airfoil chord length xα   Static unbalance in the structural 

model 

Ch  Damping coefficients in heave Vf  Flutter speed index 

Cα Damping coefficients in pitch u, v Cartesian velocity components 

Cd  Drag coefficient p Pressure 

Cd Drag coefficient t Time 

Cl  Lift coefficient ρ Density 

Cm  Moment coefficient τ Non-dimensional time 

Cp  Pressure coefficient E Total energy per unit volume 

DOF  Degree of freedom k Reduced frequency based on 

semichord length, ωf b/ U∞ 

h  Airfoil vertical displacement Φ, Ψ  Torsional and bending mode shapes 

Iα Moment of inertia α Angle of attack 

J Jacobian of transformation η Non-dimensional span length of wing 

l Wing width ξ,η  Transformed coordinates 

L Lift force ωf Frequency of vibration 

M∞ Freestream Mach number ωh  Natural frequency in plunging 

ME.A Pitching moment around elastic axis ωα  Natural frequency in pitching 

U∞ Freestream velocity μ  Airfoil-to-air-mass ratio 

E.A Elastic axis τxx,yy,xy  Shear stresses 

C.G Center of gravity   
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