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ABSTRACT

In this paper, propagation of a one-dimensional elastic stress wave in a 
functionally graded (FG) nano-bar is analysed based on the modified 
couple stress theory. It is assumed that the material properties of FG 
bar are distributed as an exponential function along the axial direction. 
The two main advantages of the modified couple stress theory over the 
classical couple stress theory are the inclusion of a symmetric couple stress 
tensor and the involvement of only one material length scale parameter. 
According to the modified couple stress theory, only one material length 
scale parameter is used to describe the size effect in nano-bar. Also, the 
shear stress components come from the lateral inertia effect are considered 
in the elastic strain energy relation. Then, the governing equations are 
derived using Hamilton’s principle and are generally solved. Finally, effects 
of length scale parameter, material inhomogeneity constant and Poisson’s 
ratio on stress wave propagation velocity and harmonic behavior of stress 
wave are evaluated and can be observed that using the classical continuum 
theory leads to considerable errors in analysis of stress wave propagation.

KEYWORDS: Nano-bar, Modified Couple Stress Theory, Stress Wave 
Propagation, Impact Mechanic, Functionally Graded Material 

1.0 INTRODUCTION

Analysis of the stress wave propagation is necessary to study 
structures subjected to the impact loading. Therefore, the preliminary 
assumptions does not govern to these problems. Several basic studies 
are accomplished on impact mechanics problems (Fowles & Williams, 
1970; Jones, 1989; Stronge, 2000; Qiao et al., 2008). However, the stress 
wave and generally imact problems are very important and applicable, 
but there are no enough studies and researchs in available about them. 
The one-dimensional bars are most common structure to analyse the 
stress wave propagation, which the stress wave propagates along the 
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axial direction of them. (Anderson, 2006) obtained the longitudinal 
stress wave propagation of an elastic bar by using higher order rod 
approximations. (Shen & Yin, 2014) presented the dynamic analysis 
of stress waves generated by impacts on non-uniform rod structures. 
(Kaishin & Bin, 2001) studied the dynamic behavior of a layered 
orthotropic bar with rectangular cross section due to impact torque. 
Also, (Shariat et al., 2010)studied on other geometry for impact 
analysis. They analysed the stress wave in thick-walled FG cylinder 
with temperature-dependent material properties.

Two main approaches usually use to analyse the longitudinal wave 
in bars. The first of these is called to be Bernoulli-Euler rod theory 
(elementary wave theory). This theory assumes that deformation 
occurs only in the longitudinal direction and that deformed planes 
remain orthogonal to the deformed bar axis. The second approach 
is known as Love rod theory (Love, 1944). In this thoery, addition to 
the assumptions of the elementary wave theory, it is assumed that the 
plane cross sections can expand or contract in their own planes. The 
Love rod theory has more accuracy than Bernoulli-Euler rod theory, 
so, this theory is employed to describe the lateral inertia effects in the 
present study.

When dimension of the structures becomes very small, accuracy of 
classical continuum theory is decreased. Consequently, we should 
utilize especial theories (nonlocal theory, couple stress theory, surface 
effect theory) to model the small scale structures, mathematically. 
Modified couple stress theory proposed by (Yang et al., 2002) is one 
of these theories, which developed over the classical couple stress 
theory (Mindlin, 1964). The modified couple stress theory is a quick 
and simple to mathematical modelling because makes use of only one 
material parameter to capture the size effect. Also, this theory includes 
a symmetric couple stress tensor. Several studies based on modified 
couple stress theory in the contexts of mechanical engineering reveal 
the exactness and capability of this theory (Shaat et al., 2012; Ke & 
Wang, 2011; Salamat-talab et al., 2012; Thai & Choi, 2013). 

Since small scale (micro or nano) bars can be useful and applicable 
in small scale devices and systems such as biosensors, atomic force 
microscopes (AFM), MEMS, and NEMS. But, study on stress wave 
propagation of nanostructures is rarely found. (Guven, 2011, 2012, 
2014) presented some solutions for propagation of stress wave in small 
scale bars under different situations and methods.
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This paper presents a modified couple stress based analysis for 
propagation of stress wave in longitudinally FG nano-bars using Love 
rod theory and Hamilton’s principle. The shear stress components are 
considered in total strain energy relation. Finally, an explicit solution 
is obtained for the FG nano-bar, and effects of material length scale 
parameter, material inhomogeneity constant and Poisson’s ratio on 
velocity of sress wave propagation and behavior of generated stress 
wave are evaluated.

2.0 COMPUTATIONAL METHOD

2.1        Functionally graded materials

Consider a solid bar with uniform cross section and area of A and length 
of L (see Figure 1), which material properties such as Young’s modulus 
and density vary on the basis of an exponential function along the axial 
(longitudinal) direction.
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Figure 1. Shematics of geometry of coordinate system. 
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where  states the gyration radius and I is the polar moment of inertia with 

respect to the z-axis. Thus, for the circular cross section, we have . Equation (18) 
presents the mean velocity of longitudinal stress wave propagation for an FG nano-bar 
by consideration of Poisson's effect. Now, this general relation can be derived for some 
particular cases. For example, when the nano-bar made of a homogeneous material with 
constant Young's modulus  and constant density  ( ), we have: 
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To obtain the mean velocity of stress wave propagation based on classical theory, It is 
enough that the material length scale parameter comes from the modified couple stress 
theory sets to zero ( ). So, we have: 
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By disregard the Poisson's effect (v=0), Equation (18) rewrites as follow: 
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where  is the velocity of stress wave propagation in a simple Bernoulli-Euler bar. 
 
 
3.0 RESULTS AND DISCUSSIONS 
 
In this paper, a general solution for different cross sections is done. This section 
presents numerical results of the stress wave propagation in an FG nano-bar made of 
circular cross section with radius  a=0.34 nm. Effects of size, heterogeneity of material 
and Poisson's ratio on the velocity and behavior of the stress wave are evaluated. 
 
Figure 2 shows the non-dimensional mean velocity of stress wave propagation versus 
the wave number with different material length scale parameters, where  is 
non-dimensional wave number. In this figure, the size effect is clearly shown and it is 
observed that by increasing the material parameter at a given radius, the mean velocity 
of stress wave propagation is increased. This exposes the size-dependent behavior of 
nano-bars subjected to excitation of the harmonic stress wave.  in this figure 
expresses the non-dimensional mean velocity of stress wave propagation based on the 
classical theory. As can be seen, the classical theory has considerable errors to estimate 
the velocity of stress wave propagation and this theory can be useful for macro scale 
structures. 
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Figure 3 illustrates the effect of the material inhomogeneity constant  on velocity of 
stress wave propagation. This figure shows that increasing the material inhomogeneity 
constant leads to decreasing the mean velocity of stress wave propagation. In fact, the 
velocity of stress wave propagation is averagely reduced when the heterogeneity of 
material increases. 
 
Poisson's effect on velocity of stress wave propagation expresses in Figure 4. For small 
non-dimensional wave number (approximately less than 3), the velocity of stress wave 
propagation is decreased by increasing Poisson's ratio, while for larger non-dimensional 
wave numbers, the velocity of stress wave propagation is increased by increasing 
Poisson's ratio. Also, when the lateral effect is neglected (v=0), the velocity of stress 
wave propagation becomes equal to a constant value (velocity of stress wave 
propagation in a homogeneous Bernoulli-Euler bar). As can be seen in Figs. 2-4, for 
large non-dimensional wave numbers , the velocity of stress wave propagation is 
increased by increasing , and increasing of  for small non-dimensional wave 
numbers leads to decreasing the velocity of stress wave propagation. 
 
According to Equation (5), the stress wave made in the nano-bar obtains as 

, where . Variations of real part of the non-dimensional 
stress wave against non-dimensional wave number with different material length scale 
parameters under , v=0.25, x=10a and t=0.1s are shown in Figure 5. In this 
figure, the stress wave behavior is completely harmonic except for very small values of 

. This is because of the fact that when the wave number tends to zero then the 
incoming wave loses its harmonic vitality and becomes a constant wave (Equation 
(16)). Moreover, by increasing , the wave length of stress wave is decreased because 
of the wave number introduced in Equation (16) relates with inverse of the incoming 
wave length. Also, the size effect on stress wave is studied and it is observed that by 
increasing the material parameter , the stress wave propagated in nano-bar starts its 
harmonic behavior earlier and leads to increasing of stress wave intensity. Similar to 
what was mentioned for Figure 5, the material inhomogeneity constant and Poisson's 
ratio have similar effect on harmonic behavior of the stress wave (Figures 6 and 7). 
 
Maximum shear stress wave made in nano-bar with circular cross section is as 

 (Equation 5), where  ( ). It should 
be noted that for circular cross section, we have: . The harmonic behavior of 
non-dimensional shear stress wave against non-dimensional wave number is shown in 
Figure 8. By increasing ,  intensity and amplitude of the shear stress increases. This is 
because of the fact that the shear stress made in nano-bar is caused by lateral inertia, 
therefore, this is dependent on radius of bar. Consequently, by increasing  at a given 
wave number, the radius of bar increases. So, , by increasing , amplitude of the shear 
stress wave increases. Because the behavior of the shear stress wave versus the material 
parameter, material inhomogeneity constant and Poisson's ratio is similar to axial stress 
wave, evaluation of theses behaviors are not considered. 
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Figure 3 illustrates the effect of the material inhomogeneity constant  on velocity of 
stress wave propagation. This figure shows that increasing the material inhomogeneity 
constant leads to decreasing the mean velocity of stress wave propagation. In fact, the 
velocity of stress wave propagation is averagely reduced when the heterogeneity of 
material increases. 
 
Poisson's effect on velocity of stress wave propagation expresses in Figure 4. For small 
non-dimensional wave number (approximately less than 3), the velocity of stress wave 
propagation is decreased by increasing Poisson's ratio, while for larger non-dimensional 
wave numbers, the velocity of stress wave propagation is increased by increasing 
Poisson's ratio. Also, when the lateral effect is neglected (v=0), the velocity of stress 
wave propagation becomes equal to a constant value (velocity of stress wave 
propagation in a homogeneous Bernoulli-Euler bar). As can be seen in Figs. 2-4, for 
large non-dimensional wave numbers , the velocity of stress wave propagation is 
increased by increasing , and increasing of  for small non-dimensional wave 
numbers leads to decreasing the velocity of stress wave propagation. 
 
According to Equation (5), the stress wave made in the nano-bar obtains as 
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. This is because of the fact that when the wave number tends to zero then the 
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of the wave number introduced in Equation (16) relates with inverse of the incoming 
wave length. Also, the size effect on stress wave is studied and it is observed that by 
increasing the material parameter , the stress wave propagated in nano-bar starts its 
harmonic behavior earlier and leads to increasing of stress wave intensity. Similar to 
what was mentioned for Figure 5, the material inhomogeneity constant and Poisson's 
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harmonic behavior earlier and leads to increasing of stress wave intensity. Similar to 
what was mentioned for Figure 5, the material inhomogeneity constant and Poisson's 
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harmonic behavior earlier and leads to increasing of stress wave intensity. Similar to 
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Poisson's ratio. Also, when the lateral effect is neglected (v=0), the velocity of stress 
wave propagation becomes equal to a constant value (velocity of stress wave 
propagation in a homogeneous Bernoulli-Euler bar). As can be seen in Figs. 2-4, for 
large non-dimensional wave numbers , the velocity of stress wave propagation is 
increased by increasing , and increasing of  for small non-dimensional wave 
numbers leads to decreasing the velocity of stress wave propagation. 
 
According to Equation (5), the stress wave made in the nano-bar obtains as 

, where . Variations of real part of the non-dimensional 
stress wave against non-dimensional wave number with different material length scale 
parameters under , v=0.25, x=10a and t=0.1s are shown in Figure 5. In this 
figure, the stress wave behavior is completely harmonic except for very small values of 

. This is because of the fact that when the wave number tends to zero then the 
incoming wave loses its harmonic vitality and becomes a constant wave (Equation 
(16)). Moreover, by increasing , the wave length of stress wave is decreased because 
of the wave number introduced in Equation (16) relates with inverse of the incoming 
wave length. Also, the size effect on stress wave is studied and it is observed that by 
increasing the material parameter , the stress wave propagated in nano-bar starts its 
harmonic behavior earlier and leads to increasing of stress wave intensity. Similar to 
what was mentioned for Figure 5, the material inhomogeneity constant and Poisson's 
ratio have similar effect on harmonic behavior of the stress wave (Figures 6 and 7). 
 
Maximum shear stress wave made in nano-bar with circular cross section is as 

 (Equation 5), where  ( ). It should 
be noted that for circular cross section, we have: . The harmonic behavior of 
non-dimensional shear stress wave against non-dimensional wave number is shown in 
Figure 8. By increasing ,  intensity and amplitude of the shear stress increases. This is 
because of the fact that the shear stress made in nano-bar is caused by lateral inertia, 
therefore, this is dependent on radius of bar. Consequently, by increasing  at a given 
wave number, the radius of bar increases. So, , by increasing , amplitude of the shear 
stress wave increases. Because the behavior of the shear stress wave versus the material 
parameter, material inhomogeneity constant and Poisson's ratio is similar to axial stress 
wave, evaluation of theses behaviors are not considered. 

 
 
 
 

 ,  intensity and amplitude of the shear stress increases. This is because 
of the fact that the shear stress made in nano-bar is caused by lateral 
inertia, therefore, this is dependent on radius of bar. Consequently, by 
increasing 

 
 

8 
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Figure 4. Poisson's effect on velocity of stress wave propagation with  and . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Behavior of non-dimensional axial stress wave versus non-dimensional wave number with 
different material length scale parameter under , v=0.25, x=10a and t=0.1s. 
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Figure 5. Behavior of non-dimensional axial stress wave versus non-dimensional wave number with 
different material length scale parameter under , v=0.25, x=10a and t=0.1s. 
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Figure 4. Poisson's effect on velocity of stress wave propagation with  and . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Behavior of non-dimensional axial stress wave versus non-dimensional wave number with 
different material length scale parameter under , v=0.25, x=10a and t=0.1s. 
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Figure 4. Poisson's effect on velocity of stress wave propagation with  and . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Behavior of non-dimensional axial stress wave versus non-dimensional wave number with 
different material length scale parameter under , v=0.25, x=10a and t=0.1s. 
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Figure 3 illustrates the effect of the material inhomogeneity constant  on velocity of 
stress wave propagation. This figure shows that increasing the material inhomogeneity 
constant leads to decreasing the mean velocity of stress wave propagation. In fact, the 
velocity of stress wave propagation is averagely reduced when the heterogeneity of 
material increases. 
 
Poisson's effect on velocity of stress wave propagation expresses in Figure 4. For small 
non-dimensional wave number (approximately less than 3), the velocity of stress wave 
propagation is decreased by increasing Poisson's ratio, while for larger non-dimensional 
wave numbers, the velocity of stress wave propagation is increased by increasing 
Poisson's ratio. Also, when the lateral effect is neglected (v=0), the velocity of stress 
wave propagation becomes equal to a constant value (velocity of stress wave 
propagation in a homogeneous Bernoulli-Euler bar). As can be seen in Figs. 2-4, for 
large non-dimensional wave numbers , the velocity of stress wave propagation is 
increased by increasing , and increasing of  for small non-dimensional wave 
numbers leads to decreasing the velocity of stress wave propagation. 
 
According to Equation (5), the stress wave made in the nano-bar obtains as 

, where . Variations of real part of the non-dimensional 
stress wave against non-dimensional wave number with different material length scale 
parameters under , v=0.25, x=10a and t=0.1s are shown in Figure 5. In this 
figure, the stress wave behavior is completely harmonic except for very small values of 

. This is because of the fact that when the wave number tends to zero then the 
incoming wave loses its harmonic vitality and becomes a constant wave (Equation 
(16)). Moreover, by increasing , the wave length of stress wave is decreased because 
of the wave number introduced in Equation (16) relates with inverse of the incoming 
wave length. Also, the size effect on stress wave is studied and it is observed that by 
increasing the material parameter , the stress wave propagated in nano-bar starts its 
harmonic behavior earlier and leads to increasing of stress wave intensity. Similar to 
what was mentioned for Figure 5, the material inhomogeneity constant and Poisson's 
ratio have similar effect on harmonic behavior of the stress wave (Figures 6 and 7). 
 
Maximum shear stress wave made in nano-bar with circular cross section is as 

 (Equation 5), where  ( ). It should 
be noted that for circular cross section, we have: . The harmonic behavior of 
non-dimensional shear stress wave against non-dimensional wave number is shown in 
Figure 8. By increasing ,  intensity and amplitude of the shear stress increases. This is 
because of the fact that the shear stress made in nano-bar is caused by lateral inertia, 
therefore, this is dependent on radius of bar. Consequently, by increasing  at a given 
wave number, the radius of bar increases. So, , by increasing , amplitude of the shear 
stress wave increases. Because the behavior of the shear stress wave versus the material 
parameter, material inhomogeneity constant and Poisson's ratio is similar to axial stress 
wave, evaluation of theses behaviors are not considered. 
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, increasing the Piosson’s ratio leads to increase 
the velocity of stress wave propagation. Also, increasing the Poisson’s 
ratio leads to the generated stress wave arrives to its harmonic behavior 
earlier.
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