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ABSTRACT

By considering the coupled effects of surface and nonlocal elasticity theory, 
the critical buckling load response of silicon/aluminium nanotubes is 
investigated in this paper. The nonlocal Eringen theory takes into account 
the effect of small scale size while the Gurtin-Murdoch model is used to 
incorporate the surface effects. Governing equations are derived through 
Hamilton’s principle. The differential transformation method (DTM) as 
an efficient and accurate numerical tool is employed to solve the governing 
equations of nanotubes subjected to different boundary conditions. The 
output results are compared favourably with available published works. 
The detailed mathematical derivations are presented and numerical 
investigations are performed while the emphasis is placed on investigating 
the effect of the nonlocal parameter, surface effect, aspect ratio, mode 
number and beam size on critical buckling loads of the nanotube in detail. 
The results show that increasing the nonlocal parameter increase the 
buckling ratio of the nanotubes.
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Surface elasticity and tension effects, Differential transformation method 

1.0 INTRODUCTION

In order to study the mechanical behaviours of nanostructures, the 
surface effects and nonlocal elasticity theory are two important fields 
which are investigated by researchers separately, or simultaneously. 
The surface of a solid is a region with small thickness which has 
different properties from the bulk. If the surface energy-to-bulk energy 
ratio is large, for example in the case of nanostructures, the surface 
effects cannot be ignored (He et. al, 2004). On the other hand, the 
nonlocal elasticity theory which is initiated in the paper of Eringen 
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(1983) expresses that the stress at a point is a function of strains at all 
points in the continuum. To account for the effect of surfaces/interfaces 
on mechanical deformation, the surface elasticity theory is presented 
by modelling the surface as a two dimensional membrane adhering to 
the underlying bulk material without slipping (Gurtin and Murdoch 
1975),(Gurtin et al, 1998). There are many studies related to the wave 
propagation, static, buckling and free linear and nonlinear vibration 
analysis of nanobeams and carbon nanotubes based on different beam 
theories 

Gurtin et al (1998) established the theory of surface elasticity to 
explain various size-dependent phenomena at the nanoscale, and 
the predictions fit well with atomistic simulations and experimental 
measurements. Wang and Feng (2007) analysed the surface effects on the 
axial buckling of nanowires. By using the surface Cauchy–Born model 
(Park, 2009) analysed the size-dependent effect of the residual surface 
stress on the resonant frequencies of silicon nanowires under finite 
deformation. Hosseini et al. (2013) studied the surface and nonlocal 
effects on free vibration of nanobeam based on both Timoshenko and 
Euler-Bernoulli beam theory (EBT) for different boundary conditions. 
In similar work, Malekzadeh et al. (2013) studied surface and nonlocal 
effect on free nonlinear vibration of non-uniform nanobeams based on 
EBT and Timoshenko beam theory. They expressed that the influence 
of surface and nonlocal effects depends on the boundary conditions 
of the nanobeam. Also, Eltaher et al.  (2013) studied the coupling 
effects of nonlocal and surface energy on free vibration of nanobeam 
based on EBT for simply supported nanobeam. They showed that the 
surface effects depend on the size and the material of the nanobeam by 
calculating natural frequencies for two different materials. Recently, 
(Ansari and Sahmani, 2011) studied bending behaviour and buckling 
of nanobeams including surface stress corresponding to different beam 
theories without consideration of nonlocality effect.

Moreover, the governing motion equations are often solved by 
analytical method Hosseini et al. (2013) or finite element methods 
(Eltaher et al, 2013) or generalized differential quadrature (GDQ) 
method (Ansari and Sahmani, 2011) and other solutions which need 
high CPU time to solve. DTM is also used to find the exact solution 
of both linear and nonlinear equations and even partial differential 
equations with high precision and also is simpler in compare with other 
methods. Although this method comes from Taylor series expansion, 
but DTM is different from the traditional high order Taylor’s series 
method. Because the traditional Taylor expansion requires symbolic 
competition of the necessary derivatives of the data functions and 
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thus is computationally taken long time for large orders, while DTM 
takes less time to solve polynomial series. In other words, by applying 
DTM, governing equations for different boundary conditions reduces 
to algebraic equations, and finally all the calculations turn into simple 
iterative process. Also as seen in the literature, DTM has been used for 
solving a vast range of problems in different fields of engineering. 

To the best knowledge of the authors, no research effort has been 
devoted so far to find the solution of critical buckling load of nanotubes 
considering both surface and small scale effects employing differential 
transformation method. Motivated by this fact, in this study, differential 
transformation method is applied in analysing the surface effects, 
including surface elasticity and stress, on critical buckling load of 
nanotubes, made of Aluminium and Silicon, using nonlocal elasticity 
theory. Hamilton’s principle is employed to derive the governing 
equation and corresponding boundary conditions. DTM is then used 
to obtain the critical buckling load of nanotubes with various boundary 
conditions. To this end, the output results are compared favourably 
with those published works and influences of the surface effect, 
nonlocal parameter and size of nanotube on the critical buckling load 
are investigated. 

2.0 THEORY AND FORMULATION

Nonlocal constitutive relation for Euler-Bernoulli beam is given as 
(Eringen, 1983):
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Where  C correspond to the missing boundary conditions at x=0. For the non-trivial 
solutions of Equation(15), it is necessary that the determinant of the coefficient matrix is 
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Solution of Equation (16) is simply a polynomial root finding problem. 
Many techniques such as Newton’s method, Laguerre’s method, etc. 
can be used to find the roots of this equation.

4.0 RESULTS AND DISCUSSIONS

A nanotube with circular cross section and two different materials, 
aluminium and silicon, are considered. The elastic bulk and surface 
properties of aluminium with crystallographic direction of [1 1 1] and 
silicon with crystallographic direction of [1 0 0] are tabulated in Table 
3. The nondimensional buckling load is defined as:
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The effects of nonlocal effect (NE), nonlocal parameter and nonlocal 
surface effect (NSE) on the first three nondimensional buckling loads 
with different boundary conditions are presented in Table 5. It should 
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 i=3 157.914 190.9530 182.3150 
     
2 i=1 22.0603 55.0996 46.4614 
 i=2 30.8814 63.9207 55.2825 
 i=3 37.9758 71.0151 62.3769 
     
4 i=1 15.3068 48.3461 39.7079 
 i=2 19.0906 52.1298 43.4917 
 i=3 21.5831 54.6224 45.9842 

 
 
 
5.0 CONCLUSIONS 
 
In the present study, the buckling behaviour of nanotubes including the effect of surface 
stress was predicted via linear partial differential equations of motion and related 
boundary conditions were derived. The nanotubes are considered to be made of Al with 
positive surface elasticity and Si with negative surface elasticity. Afterward, the 
differential transformation method as an efficient and accurate numerical tool was 
applied to solve the linear equations of nanotubes subjected to different boundary 
conditions. The good agreement between the results of this article and those available in 
literature validated the presented approach. Numerical results demonstrate that the small 
scale effects play an important role on the buckling behaviour of the nanotube. Also, it 
is observed that increasing the nonlocal parameter increased the buckling ratio of the 
nanotubes. 
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