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ABSTRACT 

 

The study of heat transfer phenomenon in microchannels has attracted 

researchers’ attention as they have many advantages in the cooling of 

electronic components. In this numerical study, the effect of adding 

alumina nanoparticles to the water flow through a microchannel with 

some baffles embedded on the top and bottom walls is discussed. The 

several cases including the effect of various volume fraction of 

nanoparticles (2, 4, 6, and 10%), Reynolds number of the inlet flow (10, 

20, 30, 40, and 50), and the number of baffles and their heights on the 

heat transfer phenomena are investigated. The local Nusselt number, the 

average outlet temperature, and the streamlines are presented for 

representing the results. The results show that increasing the Reynolds 

number decreases the average outlet temperature. Moreover, the increase 

in the number of baffles causes an increase in the average outlet 

temperature since the formation of vorticities just behind of each baffle 

and results in a large heat transfer rate. As the baffles height increase, the 

strength and the area of the vortices increase and hence the heat transfer 

rate increases. However, an increase in the volume fraction of the 

nanoparticle increases the average outlet temperature which is due to the 

increase in conduction heat transfer of nanofluid. 
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1.0 INTRODUCTION 

 

Microchannels have many industrial and engineering applications including electronic 

cooling, medical industries, chemical engineering, automotive heat exchangers, laser 

equipment and aerospace technology. The microchannels were introduced firstly by 

Tuckerman and Pease (Tuckerman & Pease, 1981). Microchannels with liquid coolant 

like water are widely used to prevent overheating of electronic components and circuits. 

Therefore, the thermal management of microelectronics has become a promising field of 

research (Bar-Cohen, 2013; Colgan et al., 2007; Lee & Mudawar, 2009). The 

microchannels create a higher heat transfer surface per unit volume, as well as a higher 

heat transfer rate. However, the smaller size of the channel, the more pressure drop takes 

                                                           
*
Corresponding author e-mail: Jahangiri.M@iaushk.ac.ir 

 

mailto:Jahangiri.M@iaushk.ac.ir


Journal of Mechanical Engineering and Technology 

68                              ISSN: 2180-1053         Vol. 10 No.2       June – December 2018 

 

places on the flow. Higher pumping power is needed as a penalty of high inlet velocity 

occurs and significantly falls as hydraulic diameter increases (Sakanova et al., 2014). The 

study of heat transfer in microchannels using conventional liquids has been reported by 

many studies (Zhang et al., 2015; Lewis & Wang, 2018; Dixit & Ghosh, 2015). Basically, 

the heat transfer of the fluid flow is limited to their thermal properties. However, the 

methods of heat transfer augmentation in microchannels have been considered and 

introduced, recently. The most recent one is associated with the high thermal conductor 

nanoparticles suspended in base fluids and increase the thermal conductivity of the 

medium (Ganvir et al., 2017; Hajmohammadi et al., 2018; Chari & Kleinstreuer, 2018). 

These particles are generally metal, metal oxide or carbide with the diameters of 1-100 

nm (Minkowycz et al., 2016). 

 

Due to the very low flow rate, the microchannel flow is characterized by a very low 

Reynolds number. Therefore, it is difficult to achieve an effective turbulent flow. Manay 

and Shahin in 2016 investigated the effect of titanium oxide nanoparticles suspended in 

water on heat transfer in a microchannel. They concluded that increasing the volume 

fraction of nanoparticles and also decreasing the microchannel height would increase the 

heat transfer rate. Azizi et al. (2016) investigated the effects of water/copper nanofluid on 

the heat transfer rate and friction coefficient in a microchannel. They showed that by 

increasing the volume fraction of nanoparticles, the heat transfer rate increases. 

Moreover, the local Nusselt number and friction coefficient increase significantly by 

adding nanoparticles compared to the base fluid.  

 

Alfaryjat et al. (2018) numerically studied the enhancement of heat transfer using various 

nanofluids in hexagonal microchannel as a heat sink. They separately examed three types 

of nanoparticles including aluminum oxide, copper oxide, and silicon oxide. They found 

that the aluminum oxide gives the highest heat transfer rate compared to the other 

nanoparticles. Ambreem and Kim (2018) studied the effect of nanoparticle size on the 

hydrothermal characteristics of nanofluids in a microchannel which is under a constant 

heat flux. They used water with aluminum and titanium oxide nanoparticles. The size of 

the nanoparticles was considered to be 20 to 200 nm. Eventually, they realized that the 

heat transfer rate increases by reducing the size of the nanoparticles. Reviewing previous 

studies leads us to conduct a study on the numerical simulation of two-dimensional flow 

and heat transfer of water-alumina nanofluid in microchannels using finite element 

method. The effect of various geometric parameters and flow conditions, including the 

different arrangement of the baffles, the height and the distance between them, the 

Reynolds number, and the volume fraction of nanoparticles, have been investigated. 

 

2.0 THEORETICAL THEORY 

 

Figure 1 shows the geometric configuration of the microchannel. The microchannel with 

the height L=1mm and a length of S =13L. The six baffles with the height of e1=0.5mm 

are embedded on the top and bottom walls. The distance between inlet and the first 

baffles on the top and bottom walls are the sb1 and sb2, respectively. The baffles are 

assumed to be adiabatic and with zero thickness in numerical simulation. 
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Figure 1. Schematic geometry of the microchannel. 

 

The physical properties of the nanofluids are assumed to be constant and initially given at 

the inlet flow temperature. The flow is assumed to be laminar and steady. The inlet fluid 

flow is fully developed. Also, the wall temperature is uniform. Some physical properties 

of nanoparticles are shown in Table 1. The inlet fluid flow has the temperature of 21°C 

and the constant temperature of 57°C is assumed on the wall. Li et al. (2006) reported 

that the conventional Navier-Stokes and energy equations with no-slip boundary 

condition based on the continuum assumption are still valid and could precisely predict 

the fluid flow and the heat transfer characteristics in microchannels.  

Table 1. Thermophysical properties of nanoparticles and base fluid at 27°C (Akbarinia et 

al., 2011). 

Alumina Water Properties 

3890 998.2 Density (kg/m
3
) 

880 4240 Heat Capacity (J/kg K) 

35 0.608 Thermal Conductivity (W/m.K) 

36 -- Diameter (nm) 

 

The governing equations include the continuity, momentum, and energy equation; 

 

(1) 𝜌∇. 𝑢 = 0 
(2  ) ∇. [−𝑝 + 𝜇(∇𝑢) + (∇𝑢)𝑇] = 0 
(3) 𝜌𝐶𝑃.∇𝑇 = ∇. (𝑘∇𝑇) + 𝑄 

 

To calculate the density and thermal capacity of the water/alumina nanofluid, the 

following relationships are used: 

 

(4) 𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑃 

(5  ) (𝜌𝐶𝑃)𝑛𝑓 = (1 − ∅)(𝜌𝐶𝑃)𝑓 + ∅(𝜌𝐶𝑃)𝑝 

 

The equation 6 is used to calculate the viscosity of the nanofluid. This correlation is 

based on the experimental results of Meiga et al. (2004) for nanofluid of water/alumina. 

 

(6) 𝜇𝑛𝑓 = (1 + 2.5∅ + 150∅2)𝜇𝑓 

 

The thermal conductivity of the nanofluid is determined by Chein, & Huang in 2005. 

This relationship takes into account the effect of Brownian motion and the average 

diameter of nanoparticles, which is as follows: 

 

Inlet Outlet 
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(7) 𝑘𝑛𝑓

𝑘𝑓
 =1+64.7 ∅0.7460  [

𝑑𝑓

𝑑𝑛𝑝
]

0.3690

[
𝑘𝑝

𝑘𝑓
]

0.7476

𝑃𝑟0.9955𝑅𝑒1.2321  

 

The special Reynolds number (Re) and Prandtle (Pr) are defined as: 

 

(8) 
𝑃𝑟𝑓 =

𝜂

𝜌𝑓 𝛼𝑓

, 𝑅𝑒𝑓 =
𝜌𝑓𝐾𝐵𝑇

3𝜋𝜂2𝜆𝑓
 

 

KB is the Boltzmann constant equal to 1.3807×10
-23

 J/K and λf is the mean free path of the 

water molecule equal to 0.17 nm and η are also calculated by equation 6 : 

 

𝜂 = 𝐴 × 10
𝐵

𝑇−𝐶,  A=2.414×10
-5

, B=247.8, C=140                                       

     (9) 

        
 

The amount of heat absorbed by the fluid through the pipe is equal to the amount of heat 

that pass through the walls. Therefore, the method for calculating the heat transfer 

coefficient is as follows: 

 

(10) 
ℎ = [

𝜌𝑄𝐶𝑃(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛)

𝐴(𝑇𝑤𝑎𝑙𝑙 − 𝑇)
] 

 

The local Nusselt number on the walls of the microchannel calculated as follows. 

𝑁𝑢𝑠𝑠𝑒𝑙𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 =
ℎ𝐿

𝑘𝑓
=

𝑞𝑊𝐿

(𝑇𝑊−𝑇𝑏)𝑘𝑓
                                                          (11) 

 

 

3.0 RESULTS AND DISCUSSIONS  

 

 

The set of equations of continuity and momentum and energy are discretized on the 

network including the triangular elements shown in the Figure 2. The numerical solution 

has been done with Ansys-Fluent software. To improve the accuracy of the solution, the 

mesh is refined in the vicinity of each baffle. To get accurate of numerical simulation a 

mesh study was accomplished by calculation the Nusselt number in the heated walls 

versus the number of grids. Finally, the network includes the number of 12531 cells have 

been selected for evaluating the results. 

 
Figure 2. Networking of the model 

 

To validate the numerical method, the local Nusselt number of the nanofluid flow with 

the Reynolds number of 6.9 and volume fraction of 5% was calculated and represented in 

Figure 3. The results were compromised with the data of Akbarinia et al. (2011) work. As 
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it can be observed the results are in a good agreement with the laboratory data, so the 

numerical model would be suitable for the modelling of the problem. 

 

 
Figure 3. Comparison between the present results of Nusselt number and the data of 

Akbarnia et al. (2011). 

 

 

 
 

Figure 4. The average outlet temperature with various Reynolds and baffles number. 

 

 

The effect of baffles on the flow pattern for various Reynolds numbers is shown in Figure 

4. As the Reynolds number increases, the average outlet temperature decreases. For the 

microchannel of a single-baffle at the Reynolds of 10 and 40, the outlet temperature is 

equal to 326.45 K and 314.9 K, respectively. As the Reynolds number increases, the 

volumetric flow rate through the channel increases. Therefore, the convective heat 
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transfer coefficient increases and the average outlet temperature decreases. The effect of 

the number of baffles on the average outlet temperature in various Reynolds number also 

depicts at Figure4. The greater the number of the baffles, the more the rejoin where the 

vortices form, which leads to an increase in the heat transfer. As it is observable, for 

Reynolds of 40, the outlet temperature changes from 315 for one baffle to about 322 for 

six baffles. The other point is that for the higher Reynolds number, the affection of the 

number of the baffles is more significant. The reason lays on the augmentation of the 

strength of vortices which are formed adjacent each of the baffles. 

 

The local Nusselt number along the length of microchannel on the top and bottom wall is 

shown at the Figure 5. As it can be observed, the local Nusselt number fluctuates along 

the microchannel and the trend is downward. As the flow pass through the microchannel, 

the temperature difference between the nanofluid and the walls reduces; therefore, the 

local Nusselt gets decreases along the microchannel length. Since the first baffle is 

embedded on the top wall, the first pick is observed on the top local Nusselt number 

trend. The picks are located at the rejoin where the vortices are formed. 

 

 
 

 

Figure 5. Local Nusselt number along the microchannel on the top and bottom walls for 

the case of six-baffles and Reynolds of 10. 

 

 

The effect of baffles height including the 0.33 L, 0.5 L, and 0.5 L on the average outlet 

temperature, for various Reynolds numbers, in a three baffles involved microchannel, is 

provided at Figure 6. As the baffles height increases, the more strong vortices are 

generated becomes larger and so the more nanofluid gets stuck behind the baffle. 

Subsequently, the heat transfer between the wall and the nanofluid increases and the 

outlet temperature increases. 

 

X 
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Figure 6. Average outlet temperature of the three-baffle involved microchannel for 

various Reynolds at different baffles height. 

 

 

 
Figure 7. Shows the average output of microchannel with a volume fraction of different 

nanoparticles in the number of baffles in Re = 10. 

 

 

The effect of addition of alumina nanoparticles to the heat transfer characteristics for 

various numbers of baffles is shown at Figure 7. As the volume fraction of nanoparticle 

increases from 0.02 to 0.1, the outlet average temperature of the microchannel output 

increases about 1 to 2 degree centigrade. Adding nanoparticles increases the conduction 

heat transfer coefficient as it was predicted by equation (7). When the nanofluid flows 

through the microchannel the both convection and conduction heat transfer play roles to 

convey heat from the walls to the nanofluid. Adjacent the walls, where the no-slip 

condition is applied, the conduction heat transfer is dominant; therefore, the nanoparticles 
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with a higher heat conduction coefficient improve the heat transfer in this rejoin. 

However, near the microchannel center line, where the wall affection is negligible, the 

convection heat transfer plays the main role. For this, addition of nanoparticles to the 

base fluid results in the viscosity increasing (see equation 6) which in turn, reduces the 

strength of vortices circulation and the convective heat transfer. The decreasing in the 

slope of outlet average temperature versus the volume fraction is because of the affection 

of viscosity increment and its influence on the strength of vortices. 

 

4.0 CONCLUSIONS 

 

In this study, a numerical modelling of the heat transfer of nanofluids flow of 

water/alumina through a microchannel includes fins was investigated. The effect of 

numbers and height of the baffles, Reynolds number, and the volume fraction of 

nanoparticles in the nanofluid on the heat transfer characteristic were studied. The 

governing equations were solved by finite element method used by Ansys Fluent 

software. The results show that the increase in the number of baffles leads to an increase 

in the number of vortices, which augments the heat transfer between the nanofluid and 

the microchannel walls. The results also show that an increasing in the Reynolds number 

causes a decreasing in the microchannel average outlet temperature. As the height and 

number of the baffles increases, the extent of the nanofluid involved in the vortices zone 

increases and, subsequently; the heat transfer increases. Finally, it was observed that an 

increase in the volume fraction of nanoparticles increases the average outlet temperature 

as the result of the heat transfer conduction increase. 
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