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ABSTRACT 

 
Total variation diminishing (TVD) scheme is a kind of robust high-resolution 

approach, which removes the undesirable oscillations generated by numerical 

solution. The present work proposes a new implementation of the TVD scheme into 

a density-based semi-implicit finite-volume procedure to solve the inviscid and 

viscous flow equations. The proposed algorithm uses a simple linearization 

technique for convective fluxes. In order to enhance the accuracy of the algorithm, 

a high-resolution TVD scheme is employed in the discretization of the governing 

equations. This procedure has a simple implementation compared to other explicit 

and implicit schemes. The present scheme is first examined for some inviscid and 

viscous steady-state flows at several Mach numbers from subsonic to the 

supersonic regime. In addition, the inviscid and viscous unsteady flows are 

simulated and compared with experimental and numerical results, so that an 

acceptable correspondence was obtained. Results from this study indicate that the 

proposed algorithm is accurate for a wide range of Mach numbers. 

 

KEYWORDS: Density-based method; Semi-implicit; Finite-volume; Navier-Stokes equations; 

Total variation diminishing. 

 

 

1.0 INTRODUCTION 

 

The flow equations typically solved in two general techniques of explicit and implicit in 

density-based methods. Implementations of the flow solution algorithm for implicit 

methods are commonly more difficult than the explicit ones, and for this reason, the flow 

simulations began with explicit procedures. Jameson was one of the earliest researchers 

who used explicit methods to solve the steady-state compressible inviscid flows 

(Jameson, 1981; 1983; 1991; Jameson & Yoon, 1986). He was commonly used 

dissipative terms for eliminating spurious oscillations, which were triggered by 

discontinuities in the solution. However, more stability and consequently, using the larger 

time steps in implicit methods cause to be attended by researchers. Another significant 

advantage of implicit schemes is their notable robustness and the rate of convergence in 

stiff equation systems or source terms, which are usually encountered in the simulations 
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of the real gases, turbulence modeling, or in highly stretched grids cases namely, high 

Reynolds number flows (Blazek, 2001). 

Difficulties of the implicit methods are associated with the existence of nonlinear fluxes 

in the flow equations which need to be linearized. A popular method for linearization is 

the local Taylor expansion about the current time level. In one of the earliest works by 

Jespersen & Pulliam (1983), some linearizations for flux-vector splitting were analyzed 

using a numerical fixed-point iteration analysis. Their analysis showed that the use of 

approximate linearizations could be quite detrimental to stability and convergence of the 

numerical scheme. Yoon & Jameson (1986) developed a relaxation method using a 

multigrid method for the solution of the Euler equations. Their solution was based on a 

central difference scheme and did not need flux splitting. 

The total variation diminishing (TVD) scheme is a high-resolution scheme, which acts 

very well on the unfavorable numerical errors in the solution of the flow equations, 

especially near the part where variables are discontinuous. Those numerical errors 

generally include numerical diffusion and oscillations when the numerical scheme is 

within the framework of the finite-volume method (Hou, Simons & Hinkelmann, 2012). 

Yee, Warming & Harten (1983) presented a detailed implementation of the implicit TVD 

scheme for the steady-state one- and two-dimensional compressible inviscid equations of 

gas dynamics. Their numerical results also indicated that the convergence rate is 

susceptible to the Courant–Friedrichs–Lewy (CFL) number. The iteration count had 

overgrown when the calculation was carried out away from an optimal time-step. A 

spatial discretization with third-order accuracy for the inviscid flux terms of the Euler 

equations used by Ravichandran (1997).  He combined a Runge-Kutta time-stepping 

algorithm with the high-order spatial discretization to produce effective integration 

schemes for steady-state Euler computations. Teixeira & Alves (2012) carried out a 

procedure that generated steady-states with accurate far-field entrainment. An efficient 

and robust explicit time integration procedure for a high-order discontinuous Galerkin 

method was proposed by Renac et al. (2013) to solve the unsteady compressible Navier–

Stokes equations. Kapen & Tchuen (2015) investigated an easy implementation method 

for the solution of the multi-dimensional Riemann problem for gas dynamics by use of 

the literal extension of the Toro Vazquez-Harten Lax Leer scheme.  

A high-order TVD scheme is also a kind of robust high-resolution scheme, which removes 

the numerical errors by employing a limited flux to maintain monotonicity as well as high 

accuracy. The TVD concept introduced by Harten (1983) for ensuring monotonicity. This 

concept was then developed by Sweby (1984) using a flux limiter. This limiter consists 

of a limiter variable r and a limiter function Φ, which are presented as an r-Φ diagram. 

However, the TVD conditions are met only within a fixed part of this diagram. That means 

a group of schemes fulfill this law by laying the r-Φ into this TVD region, such as 

minmod, Van Leer, Van Albada, Superbee, and other schemes (Waterson & Deconinck, 

2007). All of these schemes are derived based on the uniform grids. Hou et al. (2012) 

presented the TVD schemes for both uniform and unstructured grids. They also proposed 

an improved TVD scheme named WAHY. Zhang et al. (2015) proposed a refined r‐
factor algorithm for implementing the TVD schemes on arbitrary unstructured meshes 

based on the previous researches. 

The above-mentioned studies were carried out for the steady-state solutions. Another 

disadvantage of explicit methods was appeared in solving unsteady problems, because of 

the lack of convergence in time steps. Jameson (2009) first implemented the dual-time 
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method for unsteady flows using an explicit multistage scheme accelerated by local time-

stepping and multigrid. The significant advantage of this approach is that the physical 

time step is not restricted as usual in explicit methods. This method caused the 

convergence in each physical time step using an internal iteration loop. However, the 

dual-time stepping method increased CPU time.  

Some of the existing implicit procedures have high speed to solve the steady-state flows 

due to using the large time steps. However, there are lots of unsteady problems, which do 

not need the large time steps and thus, implementation difficulties and use of huge 

computer memory are not affordable for these problems. This issue is especially crucial 

for solving three-dimensional problems or two-dimensional ones, which need the large 

computational grids. In this study, the implementation of a semi-implicit TVD scheme 

with a simple linearization technique is described in details. This procedure has some 

benefits as below: 

1- Ease of implementation even against the existing explicit procedures 

2- Use of high-resolution TVD schemes to prevent the numerical oscillations 

3- Ease of coupling with other equations such as turbulence models, solid equations of 

motion (fluid-structure interaction) and two-phase flows. 

4- No need to solve additional relations such as dissipative terms used in the central 

methods, Roe matrix, … 

 

To evaluate the present procedure, the Navier-Stokes equations are solved on a two-

dimensional, unsteady, compressible flow by writing a computer code. Since an accurate 

validation is required for any numerical solver, several code validation studies are 

presented, including some cases of pressure and Mach number distributions and variations 

of lift, drag and pitching moment coefficients. 

 

 

GOVERNING EQUATIONS 

 

In this section, the numerical procedure used to compute the unsteady compressible 

flow is briefly described. The integral formulations for mass, momentum and energy 

conservation, in the non-dimensional form, are expressed as follows (Blazek, 2001): 

 

(1) 
𝜕

𝜕𝜏
∫ �⃗⃗� 

 

𝛺

𝑑𝛺 + ∮(𝐹 𝑐 − 𝐹 𝑣)𝑑𝑆 = 0

 

𝜕𝛺

 

 

where Ω is the control volume, bounded by the closed surface ∂Ω, �⃗⃗�  denotes the vector 

of the so-called conservative variables, and  𝐹 𝑐 and 𝐹 𝑣 are convection and viscous fluxes 

expressed as follows: 
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(2) 
�⃗⃗� = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

] ;   𝐹 𝑐 = [

𝜌𝑉
𝜌𝑢𝑉 + 𝑛𝑥𝑝
𝜌𝑣𝑉 + 𝑛𝑦𝑝

𝑉(𝜌𝐸 + 𝑝)

] ;   𝐹 𝑣 =

[
 
 
 

0
𝑛𝑥𝜏𝑥𝑥 + 𝑛𝑦𝜏𝑥𝑦

𝑛𝑥𝜏𝑦𝑥 + 𝑛𝑦𝜏𝑦𝑦

𝑛𝑥𝛩𝑥 + 𝑛𝑦𝛩𝑦 ]
 
 
 

 

 

where V is defined as the scalar product of the velocity vector and the unit normal 

vector as follows: 

(3) 𝑉 ≡ 𝑣 . �⃗� = 𝑛𝑥𝑢 + 𝑛𝑦𝑣 

 

with nx and ny being the components of the outward facing unit normal vector of the 

control surface ∂Ω. 

E is the total energy per unit mass and is defined as 

 

(4) 𝐸 =
𝑝

𝜌(𝛾 − 1)
+ (

𝑢2 + 𝑣2

2
) 

 

The shear stress components, Θx and Θy are expressed as follows: 

 

(5) 
𝜏𝑥𝑥 = 2𝜇

𝑀∞

Re
(
𝜕𝑢

𝜕𝑥
−

∇⃗⃗ · 𝑣 

3
) 

 

(6) 
𝜏𝑦𝑦 = 2𝜇

𝑀∞

Re
(
𝜕𝑣

𝜕𝑦
−

∇⃗⃗ · 𝑣 

3
) 

 

(7) 
𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇

𝑀∞

Re
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) 

 

(8) 
𝛩𝑥 = 𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 

 

(9) 𝛩𝑦 = 𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 

 

All geometrical lengths are normalized with the size of characteristic length L, velocities 

with the free-stream speed of sound a∞, physical time (τ) with L/a∞, viscosity (μ) with μ∞, 

density (ρ) with ρ∞, and pressure (p) with ρ∞a∞
2. 

 

 

IMPLICIT DISCRETIZATION OF THE GOVERNING EQUATIONS 

 

The present semi-implicit algorithm is based on an iterative procedure. For simplicity, all 

the equations are developed in two-dimensional Cartesian coordinates. However, the 

algorithm and the underlying principle are general and can be applied to all structured 

(staggered or collocated) or unstructured grid systems. Performing spatial integration on 

the governing equation, over the control volume presented in Figure 1, leads to the 

following discrete equations: 
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Figure 1. Control volume for the two-dimensional situation. 
 

 

(10) 
�⃗⃗� 𝑛+1

𝑃 − �⃗⃗� 𝑛
𝑃

∆𝑡
∆𝑥∆𝑦 + 𝐴 𝑒 − 𝐴 𝑤 + �⃗� 𝑛 − �⃗� 𝑠 = 𝑆  

 

where 𝐴  and �⃗�  are the nonlinear convective flux vectors and 𝑆  denotes the source term 

vector expressed as follows: 

 

(11) 

𝐴 = [

𝜌𝑢∆𝑦
𝜌𝑢𝑢∆𝑦
𝜌𝑢𝑣∆𝑦
𝜌𝑢𝐸∆𝑦

] ;  �⃗� = [

𝜌𝑣∆𝑥
𝜌𝑣𝑢∆𝑥
𝜌𝑣𝑣∆𝑥
𝜌𝑣𝐸∆𝑥

] ;  𝑆 

=

[
 
 
 
 
 

0

[(𝜏𝑥𝑥 − 𝑝)𝑒 − (𝜏𝑥𝑥 − 𝑝)𝑤]∆𝑦 + (𝜏𝑥𝑦𝑛
− 𝜏𝑥𝑦𝑠

)∆𝑥

(𝜏𝑦𝑥𝑒
− 𝜏𝑦𝑥𝑤

)∆𝑦 + [(𝜏𝑦𝑦 − 𝑝)
𝑛

− (𝜏𝑦𝑦 − 𝑝)
𝑠
] ∆𝑥

[(𝛩𝑥 − 𝑢𝑝)𝑒 − (𝛩𝑥 − 𝑢𝑝)𝑤]∆𝑦 + [(𝛩𝑦 − 𝑣𝑝)
𝑛

− (𝛩𝑦 − 𝑣𝑝)
𝑠
] ∆𝑥]

 
 
 
 
 

 

 

Equation (10) can be linearized as sollow: 

 

(12) 

�⃗⃗� 𝑃
𝑛+1

− �⃗⃗� 𝑃
𝑛

∆𝑡
∆𝑥∆𝑦 + 𝑢𝑒

𝑛�⃗⃗� 𝑒
𝑛+1

∆𝑦 − 𝑢𝑤
𝑛�⃗⃗� 𝑤

𝑛+1
∆𝑦 + 𝑣𝑛

𝑛�⃗⃗� 𝑛
𝑛+1

∆𝑥

− 𝑣𝑠
𝑛�⃗⃗� 𝑠

𝑛+1
∆𝑥 = 𝑆 𝑃

𝑛
 

 

with known faces velocities ue, uw, vn and vs from the previous iteration. subscripts e, w, 

n, s and p in Equation (12) are the locations as described in Figure 1. 

 

To solve the linear equation (12), the conservative variables on the faces of the control 

volume, i.e., �⃗⃗� 𝑒,  �⃗⃗� 𝑤, �⃗⃗� 𝑛 and �⃗⃗� 𝑠 must be approximated by the cell centers ones with high-

order accuracy. There are various high-resolution limiter schemes such as essentially non-
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oscillatory (ENO), weighted essentially non-oscillatory (WENO), normalized variable 

diagram (NVD) and total variation diminishing (TVD). The last case is one of the most 

robust schemes for capturing severe gradients in the flow-field.  

 

3.1       Applying the TVD scheme 

 

For uniform grids, the face value �⃗⃗� 𝑒 (between the cell centers P and E) is written in Roe’s 

way (Roe, 1985). It consists of a diffusive first order upwind term and an anti-diffusive 

term: 

(13) 

�⃗⃗� 𝑒 = �⃗⃗� 𝑃 +
1

2
𝛷(𝑟𝑒)(�⃗⃗� 𝐸 − �⃗⃗� 𝑃)   ;    𝑢𝑒 > 0 

 

�⃗⃗� 𝑒 = �⃗⃗� 𝐸 +
1

2
𝛷(𝑟𝑒)(�⃗⃗� 𝑃 − �⃗⃗� 𝐸)   ;    𝑢𝑒 < 0 

 

The upwind ratio 𝑟𝑒 of consecutive differences of �⃗⃗� , can be expressed as follows: 

 

(14) 

𝑟𝑒 =
�⃗⃗� 𝑃 − �⃗⃗� 𝑊

�⃗⃗� 𝐸 − �⃗⃗� 𝑃
   ;    𝑢𝑒 > 0 

 

𝑟𝑒 =
�⃗⃗� 𝐸 − �⃗⃗� 𝐸𝐸

�⃗⃗� 𝑃 − �⃗⃗� 𝐸
   ;    𝑢𝑒 < 0 

 

Indeed, the anti-diffusive term in Equation (13) is a second-order correction term; 

however, the TVD conditions necessitate that the function Φ stays within the second-

order TVD region and pass through the point (1,1) (Sweby, 1984) as shown in Figure 2. 

Some conventional TVD schemes are listed in below and also plotted in Figure 2. 

 

∅(𝑟) = 𝑚𝑎𝑥[0,𝑚𝑖𝑛(𝑟, 1)] Minmod (Harten, 1983) 

∅(𝑟) = 𝑚𝑎𝑥[0,𝑚𝑖𝑛(2𝑟, 1),𝑚𝑖𝑛(𝑟, 2)] Superbee (Harten, 1983) 

∅(𝑟) = (𝑟 + |𝑟|) (1 + 𝑟)⁄  
Van Leer (Waterson & Deconinck, 

1983) 

∅(𝑟) = 𝑚𝑎𝑥[0, (𝑟 + 𝑟2) (1 + 𝑟2)⁄ ] Van Albada (Blazek, 2001) 
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Figure 2. Second-order TVD region (grayed area) and some schemes. 

 

 

3.2       Deriving linear equations system 

 

With replacing the equation (13) into the equation (12) and considering the flow 

directions, the set of linear flow equations will be derived as follow: 

 

(15) 𝑎𝑃�⃗⃗� 𝑃
𝑛+1

= 𝑎𝐸�⃗⃗� 𝐸
𝑛+1

+ 𝑎𝑊�⃗⃗� 𝑊
𝑛+1

+ 𝑎𝑁�⃗⃗� 𝑁
𝑛+1

+ 𝑎𝑆�⃗⃗� 𝑆
𝑛+1

+ �⃗� 𝑛 
where 

(16) 𝑎𝐸 = 𝑚𝑎𝑥[0,−(1 − ∅(𝑟𝑒) 2⁄ )𝑢𝑒∆𝑦] − 𝑚𝑎𝑥[0, 𝑢𝑒∆𝑦 ∅(𝑟𝑒) 2⁄ ] 
 

(17) 𝑎𝑊 = 𝑚𝑎𝑥[0, (1 − ∅(𝑟𝑤) 2⁄ )𝑢𝑤∆𝑦] − 𝑚𝑎𝑥[0,−𝑢𝑤∆𝑦 ∅(𝑟𝑤) 2⁄ ] 
 

(18) 𝑎𝑁 = 𝑚𝑎𝑥[0,−(1 − ∅(𝑟𝑛) 2⁄ )𝑣𝑛∆𝑥] − 𝑚𝑎𝑥[0, 𝑣𝑛∆𝑥 ∅(𝑟𝑛) 2⁄ ] 
 

(19) 𝑎𝑆 = 𝑚𝑎𝑥[0, (1 − ∅(𝑟𝑠) 2⁄ )𝑣𝑠∆𝑥] − 𝑚𝑎𝑥[0,−𝑣𝑠∆𝑥 ∅(𝑟𝑠) 2⁄ ] 
 

 

(20) 𝑎𝑃 = ∆𝑥∆𝑦 ∆𝑡⁄ + 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 + (𝑢𝑒 − 𝑢𝑤)∆𝑦 + (𝑣𝑛 − 𝑣𝑠)∆𝑥 
 

(21) �⃗� 𝑛 = 𝑆 𝑃
𝑛

+ �⃗⃗� 𝑃
𝑛
∆𝑥∆𝑦 ∆𝑡⁄  

 

where aE, aw, … , aSS and aP are the 4 x 4 diagonal matrices for each grid cell. The set of 

equations (15) can be solved by various schemes such as Alternating Direction Implicit 

(ADI), Lower-Upper Symmetric Gauss-Seidel (LU-SGS), Generalized Minimal Residual 

(GMRES), etc. In this work, an ADI method is used. To dispose of the above procedure, 

an algorithm is presented for one time step as below: 

 

1- Generate a computational grid, 

2- Determine the distances of the grid cells (Δx and Δy), 

3- Calculate the faces velocities (ue, uw, vn and vs), 

4- Choose a TVD scheme (Φ(r)), 
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5- Calculate the coefficients (relations (16-20)), 

6- Calculate the source term (�⃗� 𝑛), 

7- Form coefficient matrix (A), 

8- Solve the set of equations 𝐴�⃗⃗� 𝑛+1 = �⃗� 𝑛,  

9- Obtain the pressure from equation (4) and, 

 

Iterate the steps (3-9) to reach convergence criteria. 

 

 

RESULTS AND DISCUSSIONS 

 

For the implementation of the numerical solution in the computational space, the present 

procedure is tested for some steady-state and unsteady flows. In all cases, the Van Albada 

TVD scheme was used. For steady-state and unsteady flows, the CFL number was set to 

10 and 5, respectively. 

 
 

4.1       Steady-state inviscid flows 

 

The results of inviscid subsonic, transonic and supersonic flow calculations with the TVD 

scheme over a bump in a channel and on a NACA 0012 airfoil are presented. For the 

bump test, at the inlet of the channel, all flow variables are specified if a supersonic flow 

is considered. For subsonic inlet flow, stagnation pressure P0, stagnation temperature T0 

and the inlet angle are specified. At the outlet boundary, all the flow variables are 

extrapolated for the supersonic regime. The pressure is fixed for the subsonic outlet flows. 

Also, the slip boundary conditions are used on the upper and lower walls. A non-uniform 

grid of 90×30 in which the grid lines are closely packed in and near the bump region is 

shown in Figure 3. 
 

 
 

Figure 3. Bump geometry. 
 

For the airfoil case, far-field boundary condition at the outlet and slip boundary conditions 

on the airfoil are used. A 340×40 C-type grid with excellent orthogonality is used in this 

case, so that the far-field boundaries were at least twenty chord lengths away. Figure 4 

shows a close-up view of this grid. 
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Figure 4. A view of C-type grid used in flow computations. 

 

In the first test, static to stagnation pressure ratio was used to give a Mach number of 0.5 

at the inlet of 10% thick bump. The Mach number distribution on the lower and upper 

walls are compared to TVD results obtained by Eidelman, Colella & Shreeve (1984) in 

Figure 5. It is seen that two Mach number distributions are very similar. 

 

 
 

Figure 5. Mach number values on lower and upper walls of bump for M∞=0.5. 

 

For the transonic test, flow past a NACA 0012 airfoil with free-stream Mach number of 

0.8 and angle of attack α=1.25 deg is solved and the pressure distribution is compared 

with TVD results by Pulliam & Steger (1985) in Figure 6. The results are very similar. 

Only the minimum pressure coefficient on the lower surface of the airfoil in the present 

study is 6% smaller. Locations of the shock waves can be seen on Mach contour 

distributions as shown in Figure 7. 
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Figure 6. Pressure distribution on NACA 0012 airfoil for M∞=0.8 and α=1.25o). 
 

 

 

 

 
 

 

Figure 7. Contours of Mach number on NACA 0012 airfoil for M∞=0.8 and α=1.25o. 
 

 

The third case is supersonic flow with M∞=1.4 over 4% thick bumps on a channel wall. 

Figure 8 shows the Mach number distribution on the upper and lower surfaces. These 

results are compared with the results of TVD scheme obtained by Djavareshkian & Reza-

zadeh (2007). This comparison shows that the resolution of the leading edge shock, the 

reflection of leading edge shock at the upper wall and trailing edge shock for two schemes 

are very close together. This verifies the validity of the present high-resolution scheme 

for supersonic flow. 
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Figure 8. Mach number values on lower and upper walls of bump for M∞=1.4. 
 

 

4.2       Steady-state viscous flows 

 

The viscous flow calculations with the TVD scheme over a NACA 0008 airfoil and a 

circular cylinder are carried out at subsonic regime with M∞=0.1. No-slip conditions on 

the solid boundary are used. A 340×40 C-type grid and a 150×60 O-type grid are used in 

NACA 0008 airfoil and cylinder case, respectively. In the first viscous flow test, flow 

around a circular cylinder with Re=40 is simulated and the surface pressure distribution 

is compared to experimental data (Grove et al., 1964) and numerical results from (Sen, 

Mittal & Biswas, 2009) as shown in Figure 9. 
 

 
 

Figure 9. Pressure distribution on a circular cylinder for Re=40 and M∞=0.1. 
 

The second viscous case is the flow past a NACA 0008 airfoil with chord-base Re=6000 

and α=4 deg. Figure 10 shows the temporal variation of the drag and lift coefficients. The 

simulations are run for a relatively large time duration of τ*=τM∞=20 at which point the 

force on the foil reaches a nearly constant value. These lift and drag coefficients are 
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compared with the numerical simulations by Mittal et al. (2008), and it is found that the 

current methodology provides a reasonably good prediction of these fundamental 

quantities. 

 

 

 
 

 

Figure 10. Temporal variation of drag and lift coefficients for NACA 0008 airfoil at 

α=4° for Re=6000. 
 

4.3       Unsteady inviscid flow 
 

The present method is used to calculate the flow over a NACA 0012 airfoil pitching 

around its quarter-chord point. Experimental data were provided by Landon (1982). The 

following equation describes the pitching motion of the airfoil: 

 

(22) 𝛼(𝑡) = 𝛼𝑚 + 𝛼0𝑠𝑖𝑛(𝜔𝑡) 
 

where αm is the main angle of attack and α0 is the angular amplitude. The angular 

frequency ω is related to the reduced frequency defined as follow: 

 

(23) 𝑘 = 𝜔𝑐/2𝑈∞ 
 

where c is the airfoil chord length. The grid used in the unsteady-flow calculations is the 

same as those used in the other steady-flow computations. The criterion for the 

convergence of the computations is that the maximum magnitude of the normalized 

residual must be reduced by more than six orders of magnitude as follow: 

 

(24) 𝑅(𝑛) = 𝑚𝑎𝑥 (|
�⃗⃗� 𝑘+1 − �⃗⃗� 𝑘

�⃗⃗� 𝑟𝑒𝑓

|) < 10−6 

 

where �⃗⃗� 𝑟𝑒𝑓 is a reference value for �⃗⃗�  and subscript k denotes the previous iteration. The 

present method is validated by comparing with numerical results obtained by Gao et al. 

(2005). Results are also compared with experimental data (Landon 1982).The airfoil is a 
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NACA 0012 pitching at the free-stream Mach number M∞ = 0.755, αm = 0.016 deg, α0 = 

2.51 deg, and k = 0.0814. The experimental Re = 5.5×106. The comparisons of the present 

inviscid computations, numerical results (Gao et al., 2005) and the experimental data 

(Landon, 1982) of the instantaneous lift and moment coefficients versus the instantaneous 

angle of attack are presented in Figure 11. In order to observe the convergence process, 

the normalized residual is plotted in Figure 12. It can be seen that the convergence is well 

taken. 
 
 

 

 

Figure 11. Comparison of lift and moment coefficients on NACA 0012 airfoil 

M∞ = 0.755, αm = 0.016 deg, α0 = 2.51 deg, k = 0.0814. 
 

 

 

 
 

Figure 12. convergence process for NACA 0012 airfoil. 
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4.4       Unsteady viscous flow 

 

In order to test the accuracy of the viscous flow solutions for the unsteady problem, a 

rotating circular cylinder is studied. Some calculations are carried out for Re=200 and 

ratio of the surface speed to free-stream velocity, k =0.5 with an impulsive start. 

Streamlines for non-dimensional time τ*=τM∞ are compared with the experimental results 

from Coutanceau & Menard (1985) as shown in Figure 13. Good agreement is seen 

between the computational and experimental results for all times. 

The next study is to compare the lift coefficients of a rotating cylinder with 

numerical results from (Teymourtash & Salimipour 2017). Since in this reference, an 

incompressible flow is simulated, a free-stream Mach number of 0.05 is used to prevent 

the compressibility effects. Figure 14 shows these comparisons with respect to the non-

dimensional time τ* for 0 ≤ k ≤ 5 and Re=200. The results show excellent agreement. 

 

 

 
 

 

 

 

 

Figure 13. Comparison of instantaneous streamlines past a rotating cylinder for α=0.5, 

Re=200 and M∞=0.1. 
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Figure 14. Comparison of cylinder lift coefficients for k=0-5 and Re=200. 

 

 

 

CONCLUSIONS 

 

A high-resolution scheme has been implemented in a density-based, finite-volume 

procedure which uses a semi-implicit solution algorithm. The mentioned scheme based 

on total variation diminishing (TVD) is developed to compute the fluxes of the convected 

quantities, including mass flux. The TVD scheme removes the undesirable oscillations 

generated by numerical errors, with preserving the solution accuracy. The method is 

applied to subsonic, transonic and supersonic flows, and the results have been compared 

with predicted data by the other TVD schemes based on the characteristic variable or 

experimental data. These comparisons show that the present high-resolution scheme 

predicts shock waves and unsteady boundary layer with high accuracy for both steady 

and unsteady flows. The discretization and the deriving linear equations system show that 

the present procedure can be easily implemented to solve the inviscid and viscous flows 

for a wide range of Mach numbers. 
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NOMENCLATURE 

 
a∞ Free-stream speed of sound u, v Cartesian velocity components 

c Airfoil chord length M∞ Freestream Mach number 

Cd Drag coefficient α Angle of attack (deg) 

Cl  Lift coefficient θ Surface angle respect to cylinder center 

Cm  Moment coefficient k Ratio of surface speed to free-stream 

velocity 

Re Reynolds number τ  Time 

Cp  Pressure coefficient __ Mean value superscript 

p Pressure   

 

 

 


