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ABSTRACT

This paper theoretically examines the effects of water-Al2O3 nanofluid on 
exergy destruction, exergy efficiency and pumping power in the helically 
coiled tube heat exchanger under turbulent flow and subjected constant 
wall condition. The effects of the nanoparticles volume concentration, 
nanoparticle dimensions, Reynolds number, curvature ratio and 
dimensionless inlet temperature considered to be the main parameters in this 
study. It is found that when the Reynolds number increases, dimensionless 
total exergy destruction decreases. It is observed that by increasing the 
nanoparticles volume concentration from 2% to 6%, the dimensionless 
thermal exergy destruction reduces by 3.64% to 20.21 % compared to 
pure water. Also, it is seen that when nanoparticles dimensions increases, 
the exergy efficiency increases and pumping power decreases. Finally, the 
exergy efficiency increases with increasing of curvature ratio and pumping 
power decreases with increasing of curvature ratio.

KEYWORDS: Helically coiled tube, Exergy efficiency, Second law 
analysis, Turbulent flow, Nanofluid. 

1.0 INTRODUCTION

In industry and engineering applications, helically coiled heat 
exchangers are effective equipment, since it is used in industrial fields 
including power generation, food processing, petrochemical industry, 
HVAC and refrigeration. (Chingulpitak and Wongwises, 2011),(Zhao 
et al, 2011). Helically coiled heat exchangers increase the heat transfer 
surface area per unit volume and enhance the heat transfer coefficient 
of the flow inside the tube without turbulence or additional heat 
transfer surface area. The centrifugal forces in the coiled tube induce 
a secondary flow pattern consisting of two vortices perpendicular to 
the axial flow direction is set up, and heat transport will occur not 
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only by diffusion in the radial direction but also by convection. The 
contribution of this secondary convective transport dominates the 
overall process and enhances the rate of heat transfer per unit length 
of tube compared to a straight tube of equal length (Prabhanjan et al, 
2002). The common fluids such as water, ethylene glycol and oil have 
poor heat transfer performance in heat exchanger (Godson et.al, 2010). 
If metallic nanoparticles with high thermal conductivity use in typically 
fluids, heat transfer will increase. Enhancement of heat transfer using 
nanoparticles suspended in a base fluid has been studied widely in 
recent years (Xie et al, 2002), (Buongjorno, 2006), (Bianco et al, 2009), 
(Shafahi et al, 2010). Xuan and Li (2003) experimentally studied the flow 
and heat transfer characteristics for cu-water based nanofluids through 
a plain tube with a constant heat flux boundary condition. They found 
that the nanofluids give substantial enhancement of heat transfer rate 
compared to pure water.

A number of researchers have investigated the performance of heat 
exchangers (Mohammed et al, 2011),(Ahmed et al, 2011),(Lotfi et al, 
2012),(Raja et al, 2012) using nanofluids. Naraki et al. (2013) investigated 
experimentally the heat transfer coefficient of CuO/water nanofluids in 
a car radiator under laminar flow regimes. They found that the overall 
heat transfer coefficient with nanofluid is more than the pure water and 
increases with increasing the nanoparticles volume fraction from 0 to 
0.4%. Peyghambarzadeh et al. (2011) experimentally studied the heat 
transfer of water-Al2O3 and EG-Al2O3 nanofluid in car radiator under 
different flow rate (2–6 liter per minute). Their results reveal that the 
heat transfer increases enhancement about 40% compared to the base 
fluids. Mukesh Kumar et al. (2013),(2014) investigated experimentally 
the heat transfer and friction factor of a shell and helically coiled 
tube heat exchanger using water-Al2O3 nanofluid under laminar and 
turbulent flow regimes. For laminar flow regime, they found that the 
overall heat transfer coefficient, inner heat transfer coefficient and 
experimental inner Nusselt number are 24%, 25% and 28%, respectively. 
Their results for turbulent flow regime indicated the Nusselt number 
for coiled tube of 0.1%, 0.4% and 0.8% nanofluids increase 28%, 36% 
and 56%, respectively higher than base fluid. They found that water-
Al2O3 nanofluid was negligible pressure drop.

Exergy destruction or entropy generation minimization is a useful 
tool for evaluating the irreversibilities associated in process or 
device (Bejan et al. . Falahat and Vosough [24] computed entropy 
generation in a coiled tube under constant heat flux for both laminar 
and turbulent regimes using alumina–water nanofluids. They found 
that by adding 1% volume fraction of nanoparticles to the base fluid, 
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entropy generation decreases about 3% in laminar flow. Also, they 
obtained an optimal Reynolds number for the turbulent flow for 
which the entropy generation was minimized. Ko and Ting [25] have 
applied this concept to find the most appropriate flow conditions of 
a fully developed, laminar forced convection flow through a helical 
coil tube for which entropy generation is minimized. Shokouhmand 
and Salimpour [26,27] studied deals with entropy generation analysis 
of fully developed laminar forced convection in a helical tube with 
uniform wall temperature. The second law of thermodynamic analysis 
of a helical coil heat exchanger using three different types of nanofluids 
is investigated analytically with Khairule et al. [28]. They found that, 
the CuO/water is best nanofluid when compared with Al2O3/water and 
ZnO/water, because the enhancement of heat transfer and entropy 
generation reduction in this type were obtained about 7.14% and 6.14% 
respectively.

To the best of authors’ knowledge, the exergy analysis and pumping 
power of nanofluid in helically coiled tube heat exchanger under 
turbulent flow regime are not considered up to now. The main aims 
of this work are to investigate the exergy destruction or entropy 
generation and pumping power inside a helically coiled tube heat 
exchanger, subjected to constant wall temperature using nanofluid with 
turbulent flow regime. The effects of Reynolds number, nanoparticles 
volume concentration, nanoparticles dimension, coil-to-tube radius 
ratio and dimension inlet temperature on exergy efficiency (second law 
efficiency) and pumping power are investigated.

2.0  METHODOLOGY

2.1  Physical Model

A typical helically coiled tube heat exchanger has been shown in Figure 
1. In this figure, d is inner diameter of the tube and D is curvature 
diameter of the coil, and H is the coil pitch. The curvature ratio, δ, 
is defined as the coil-to-tube radius ratio, d / D. The characteristics 
parameter and working conditions are shown in Table1. The other three 
important dimensionless parameters namely, Reynolds number (Re), 
Nusselt number (Nu) , and Dean Number (Dn) are defined as follow.
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where, U and h  are average velocity and convective heat transfer coefficient 
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Figure 1 Geometry configuration of a helically coiled tube heat exchanger. 

 
 
 

Table 1. Characteristic and working condition of helically coiled tube heat exchanger  
 

Characteristic/Working conditions Numerical values 
Coil diameter, )(mD  0.12 

Coil length, )(ml  0.9 

Curvature ratio,   0.03, 0.06, 0.12 

Wall temperature, )(KTw  
360 

Dimensionless temperature,   0.05, 0.1, 0.15 

Reference dead temperature, )(KTo  
298 
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where, U and h are average velocity and convective heat transfer 
coefficient respectively.
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N  is the Avogadro number 12310022.6  mol . 
The thermal conductivity of the nanofluid due to the Brownian motion is given as [30] 
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where T is the fluid temperature, Tref is the reference temperature and 
equals 293°K and К is the Boltzman constant.

Table 2. Physical properties of water and Al2O3 nanoparticle.

Property Water A12O3

Cp (J / kg K) 4179 765
ρ (kg / m3) 997.1 3600
µ (kg / m.s) 0.001 _ _ _
k (W / mK) 0.613 36
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2.3 Exergy analysis

Exergy is defined as the maximum amount of work that can be obtained 
by a system or a flow in which complete equilibrium with a reference 
environment is attained. The general exergy balance in steady state 
flow can be written as follows [31]:

5 
 
 

where T  is the fluid temperature,  refT  is the reference temperature and equals Ko293  
and    is the Boltzman constant. 
 
 
 

Table 2. Physical properties of water and Al2O3 nanoparticle. 
 

 
 
 
2.3  Exergy analysis 
 
Exergy is  defined as the maximum amount of work that can be obtained by a system or 
a flow in which complete equilibrium with a reference environment is attained. The 
general exergy balance in steady state flow can be written as follows [31]: 
 

desoutin xExExE    (9) 

 
or 
 

desoutmassinmassworkheat ExExExExEx  ,,  (10) 

 
 
The rate form of general exergy balance can be expressed by Equation 11: 
 
 

desoutoutininW ExmmWQ
T
T







  01  

(11) 

 
where T is the average temperature of the fluid inside the coiled tube, estimated as [32] 
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where h, s and subscript zero are respectively enthalpy, entropy and 
properties at the restricted dead state (T0 and P0. The entropy and 
enthalpy deviations and heat transfer rate of nanofluid in the helically 
coiled heat exchanger can be obtained as:
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Dimensionless form of Equation 18 can be expressed by Equation 20: 
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The exergy efficiency or second law efficiency is computed as Dipippo(2004); 
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The exergy efficiency or second law efficiency is computed as 
Dipippo(2004);
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The Nusselt number and friction in coiled tube heat exchanger are 
calculated using the same correlations as described below (Kakac and 
Liu);
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Another important parameter for performance of heat exchanger is pumping power 
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The pressure drop can be expressed by Equation 19 and the mass flow rate can be 
expressed by Equation 25: 
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3.0 RESULTS AND DISCUSSION  
 
The results of this work are presented in two sections. In the first section, the exergy 
analysis of nanofluid and in the second section, the pumping power are discussed. 
 
3.1  Exergy analysis results  
 
Figure 2(a), (b) and (c) illustrates the dimensionless total, thermal and frictional exergy 
destruction rate as a function of Reynolds number for different nanoparticles volume 
concentration. Parameters that are fixed constant in this results include nmdnp 30  , 

06.0  and 05.0 .The dimensionless thermal exergy destruction decreases with 
increasing Reynolds number and nanoparticles volume concentration. This is because a 
higher nanoparticles volume concentration enhances Nusselt number and increasing 
thermal conductivity of nanofluid. By increasing the nanoparticles volume 
concentration from 2% to 6%, the dimensionless thermal exergy destruction reduces by 
3.45% to 19.29% for low Reynolds number (Re=40000) and 3.64% to 20.21 % for high 
Reynolds number (Re=120000) compared to pure water. It is seen from Figure 2(b), the 
dimensionless frictional exergy destruction increased with increasing Reynolds number 
and nanoparticles volume concentration. When nanoparticles volume concentration 
increases, the viscosity increased and causing a increasing in frictional losses. This, 
consequently, results in increasing the dimensionless frictional exergy destruction. 
Figure 2(c) shows that the dimensionless frictional exergy destruction has a minor effect 
on dimensionless total exergy destruction because the value of frictional exergy 
destruction is too small for all nanoparticles volume concentration. Also this figure 
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3.0  RESULTS AND DISCUSSION

The results of this work are presented in two sections. In the first 
section, the exergy analysis of nanofluid and in the second section, the 
pumping power are discussed.

3.1	 Exergy	analysis	results

Figure 2(a), (b) and (c) illustrates the dimensionless total, thermal and 
frictional exergy destruction rate as a function of Reynolds number 
for different nanoparticles volume concentration. Parameters that 
are fixed constant in this results include dnp=30nm, δ = 0.06 and θ = 
0.05. The dimensionless thermal exergy destruction decreases with 
increasing Reynolds number and nanoparticles volume concentration. 
This is because a higher nanoparticles volume concentration enhances 
Nusselt number and increasing thermal conductivity of nanofluid. 
By increasing the nanoparticles volume concentration from 2% to 
6%, the dimensionless thermal exergy destruction reduces by 3.45% 
to 19.29% for low Reynolds number (Re=40000) and 3.64% to 20.21 % 
for high Reynolds number (Re=120000) compared to pure water. It is 
seen from Figure 2(b), the dimensionless frictional exergy destruction 
increased with increasing Reynolds number and nanoparticles volume 
concentration. When nanoparticles volume concentration increases, 
the viscosity increased and causing a increasing in frictional losses. 
This, consequently, results in increasing the dimensionless frictional 
exergy destruction. Figure 2(c) shows that the dimensionless frictional 
exergy destruction has a minor effect on dimensionless total exergy 
destruction because the value of frictional exergy destruction is too 
small for all nanoparticles volume concentration. Also this figure 
indicates that the behavior of dimensionless total exergy destruction is 
similar to dimensionless thermal exergy destruction.



ISSN: 2180-1053        Vol. 7     No. 2    July - December  2015

The Exergy Efficiency and Pumping Power of Nanofluid Through a Helically Coiled Tube Heat Exchanger Under Turbulent Flow

83

8 
 
 

indicates that the behavior of dimensionless total exergy destruction is similar to 
dimensionless thermal exergy destruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Figure 2. Variation of dimensionless exergy destruction with Reynolds number for several 
nanoparticles volume concentration (a) thermal,(b) frictional and (c) total 

 

Figure 2. Variation of dimensionless exergy destruction with Reynolds 
number for several nanoparticles volume concentration (a) thermal,(b) 

frictional and (c) total



ISSN: 2180-1053        Vol. 7     No. 2    July - December  2015

Journal of Mechanical Engineering and Technology 

84

Figure 3 shows the exergy efficiency as a function of Reynolds number 
for different nanoparticles volume concentration. Parameters that are 
fixed constant in this results similar Figure 2. It can be seen that the 
exergy efficiency increases with increasing Reynolds number and 
nanoparticles volume concentration. This enhancement is because 
of the fact that, by increasing nanoparticles volume concentration, 
heat transfer increases. Also, the curvature effect lead to forms the 
secondary flow in helically coiled tube [35] and this phenomena 
enhances heat transfer an increases exergy efficiency. For water-Al2O3 

nanofluid and nanoparticles volume concentration 2%, 4% and 6%, 
the enhancement of exergy efficiency is about 1.2%, 3.23% and 6.7% 
respectively when compared with pure water. For every nanoparticles 
volume concentration, when Reynolds number increase from 20000 to 
140000, the exergy efficiency increases about 10% and no exist optimal 
Reynolds number for minimizing the exergy efficiency.
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The influence of nanoparticles dimension on exergy efficiency is shown 
in Figure 4. Parameters that are fixed constant in this results include  
Re = 100000, δ = 0.06 and θ = 0.05. It can be seen that the exergy efficiency 
increases with increasing nanoparticles volume concentration and 
decrease with increasing nanoparticles dimension. This is because of 
the fact that smaller nanoparticles dimensions has a higher surface of 
interaction with the base fluid and increases heat transfer as well as the
increase thermal conductivity and decreasing the dimensionless thermal 
exergy destruction, also smaller nanoparticles dimensions increases 
viscosity of nanofluid strongly and increasing the dimensionless 
frictional exergy destruction, but the dimensionless frictional exergy 
destruction has a minor effect. Therefore exergy efficiency increases. 
One of important parameter in helically coiled tube heat exchanger is a 
Curvature ratio. Figure 5 illustrates the effect of δ on exergy efficiency 
for several nanoparticles volume concentration. Parameters that 
are fixed constant in this results include Re = 100000, dnp = 30nm and  
θ = 0.05. It can be seen that exergy efficiency increases with the increase 
of δ for pure water and increases by increasing the nanoparticles 
volume concentration. For all nanoparticles volume concentration, 
when δ increases from 0.03 to 0.12, the exergy efficiency increases 
approximately 33%.
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Figure 6 shows the exergy efficiency as a function of dimensionless temperature for 
different nanoparticles volume concentration. It can be seen that exergy efficiency 
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Figure 6 shows the exergy efficiency as a function of dimensionless 
temperature for different nanoparticles volume concentration. It can 
be seen that exergy efficiency decreases with increasing θ, because 
when dimensionless temperature increases, the temperature difference 
between the wall of tube and the average nanofluid temperature 
decreases and heat transfer reduces.
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Figs. 8 shows the results of pumping power at various nanoparticles 
volume concentration and nanoparticles dimension. It is observed 
from the figure that the pumping power increases with increasing 
nanoparticles volume concentration and decreases with increasing 
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nanoparticles dimension. According to this figure, when nanoparticles 
dimension increases from 30 to 70 nm, the maximum pumping power 
decreasing is about 47% at 6% nanoparticles volume concentration.
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Figure 9. Variation of pumping power with δ for several nanoparticles 
volume concentration
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4.0  CONCLUSIONS

In the present paper, an analytical analysis was carried out to study 
the effects of nanoparticles volume concentration, nanoparticles 
dimension, Reynolds number, curvature ratio and dimensionless inlet 
temperature of water-Al2O3 nanofluid on the dimensionless exergy 
destruction and exergy efficiency and pumping power in a helically 
coiled tube heat exchanger under turbulent flow regime. The results of 
this study show that: 

• With increasing the Reynolds number, the dimensionless thermal 
exergy destruction decreases and the dimensionless frictional 
exergy destruction increases but the dimensionless frictional 
exergy destruction has a negligible effect on dimensionless total 
exergy destruction. Therefore trends of dimensionless total exergy 
destruction is similar to dimensionless thermal exergy destruction.

• It is observed that with increasing nanoparticles volume 
concentration led to decreasing on dimensionless thermal exergy 
destruction. For example, by adding 6% nanoparticles volume 
concentration, dimensionless thermal exergy destruction decreases 
about 20% compared to pure water.

• The exergy efficiency increases with increasing Reynolds number 
and nanoparticles volume concentration.

• When nanoparticles dimensions increases, the exergy efficiency 
increases and pumping power decreases. This is because of the 
fact that smaller nanoparticles dimensions increases heat transfer 
as well as the increase thermal conductivity and decreasing the 
dimensionless thermal exergy destruction, increases viscosity of 
nanofluid that led to increasing pumping power.

• The exergy efficiency increases with increasing of curvature ratio 
and pumping power decreases with increasing of curvature 
ratio. For example, when δ increases from 0.03 to 0.12, the exergy 
efficiency increases approximately 33%.

• The exergy efficiency decreases with increasing dimensionless 
inlet temperature.
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NOMENCLATURE

14 
 
 

 
NOMENCLATURE 
 

PC  specific heat, KkgkJ /  
D  Coil diameter, m  
d  Tube diameter, m  
Dn  Dean number 

npd  Particle size, nm  
Ex  Exergy rate, W  
f  friction factor 
h  heat transfer coefficient, KmW 2/  
k  thermal conductivity of the fluid, KmW /  
l  length of coiled tube, m  
m  mass flow rate, skg /  
N  Avogadro number 
Nu  Nusselt number 
P  pressure, Pa  
Pr  Prandtl number 

WQ  
Heat transfer rate, W  

Re  Reynolds number 
s  specific entropy, KkgkJ /  
T  temperature, K  
 
Greek symbols 
 
  viscosity of the fluid, sPa .  
  density, 3/ mkg  
  nanoparticles volume fraction  
  Coil-to-tube ratio 
  Exergy efficiency 
  dimensionless temperature, 

w

inw

T
TT   

Subscripts 
 
bf  base fluid 
in  inlet 
out  outlet 
nf  Nanofluid 
p  particles 
o  dead state 
w  Wall 
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