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ABSTRACT

This paper presents the analysis of temperature distribution by using 
Fourier series strategy. Using this strategy, two analyses have been made 
where an even and odd number is applied in the series. In even number, 
the trivial solution occur where there are no solution been made, but in 
odd number the solution is succeed. By using the equation made by odd 
number, the equation has been analysis using MatLab-Programming. In 
this analysis, the contour mapping of temperature distribution is shown 
clearly. Based on the mapping, it can be concluded that the temperature 
distribution happens because of the adiabatic phenomenon of the material 
properties itself.

KEYWORDS: Fourier series, Isotherms, Adiabatic, Temperature   
distribution.

1.0 IntroDuCtIon

It is not easy to give an exact definition of temperature because 
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majority of human around the world classify temperature to only 
familiar with hotness or coldness. In physiological ambiance, the level 
of temperature can be measured as a cold, freezing cold, warm, hot 
and red hot. For the basic example, metal will feel much colder than 
the wood when both materials are at the same temperature and same 
place. According to this example, several materials properties can be 
changed regarding the changes of the temperature around the material 
itself. The material properties can be changed with temperature in 
a repeatable and predictable way according the basis of accurate 
temperature measurement. 

In a common example, a cup of hot tea present on the table ultimately 
cools off and cold drink sooner or later warms up. In this phenomenon, 
a body of hot tea and cold drink are brought into contact with another 
body with different temperature and heat transfer phenomenon is 
happen where the hot temperature transfer it temperature to the low 
temperature areas. This phenomenon will continue until both area reach 
with same temperature. When both areas are in a same temperature, 
these two areas are said in a thermal equilibrium condition. Zeroth Law 
of Thermodynamics explains that if two bodies in thermal equilibrium 
with a third body, they are also in thermal equilibrium for each others. 
This law had been formulated by R.H.Fowler in 1931. 

In this study, the authors have studied the mediums’ properties 
according to the heat transfer effect in several materials. Therefore, the 
knowledge on medium’s value of temperature at all point is necessary. 
Heat transfer analysis basically plays a central role in the design of 
chemical processes and in the development of process system. In order 
to make accurate analysis to the heat transfer problem, parameters such 
as the roll speed, thermal conductivity, rate of cold air, thickness and 
temperature surface is needed.

Heat transfer problem can occur by three mechanisms and there are 
conduction, convection and radiation. Conduction mechanism is a 
collision of molecules causes the thermal energy to be transferred from 
one molecule to other one molecule. In this heat transfer process, the 
very energetic molecules will lose their energy while the lower energy 
molecules will get the more energy. In convection mechanism, it only 
occurs when the energy in macroscopic flow in fluid was associated 
with a parcel. Then, the fluid was converted to another region of space. 
In this case, it also can be called as an unsteady state behaviour. The 
radiation mechanism happens when the molecular vibrate and give an 
electromagnet radiation which certain amount to the other molecular. 
The radiation behaviour transmits the energy throughout the space 
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and vacuum containing.

These three mechanisms have a potential to generate the instantaneous 
values of temperature at all points of the medium of interest and also 
called as a temperature distribution or field. The unsteady temperature 
distribution appears when medium’s temperature not only varies 
from point to point, but also depends on time. In time domain, the 
temperature at a various points in a medium can be changed and 
then the internal energy of the molecular also changed. A steady state 
temperature distribution occurs when a temperature at a given point 
never varies with time and this type is called as a space coordinates 
only. 

The temperature distribution by governing equations also called a three 
dimensional. This equation of temperature is describes as a function of 
three space coordinates, 

temperature, these two areas are said in a thermal equilibrium condition. Zeroth Law of 
Thermodynamics explains that if two bodies in thermal equilibrium with a third body, they are also 
in thermal equilibrium for each others. This law had been formulated by R.H.Fowler in 1931.  

 
In this study, the authors have studied the mediums’ properties according to the heat transfer effect 
in several materials. Therefore, the knowledge on medium’s value of temperature at all point is 
necessary. Heat transfer analysis basically plays a central role in the design of chemical processes 
and in the development of process system. In order to make accurate analysis to the heat transfer 
problem, parameters such as the roll speed, thermal conductivity, rate of cold air, thickness and 
temperature surface is needed. 

 
Heat transfer problem can occur by three mechanisms and there are conduction, convection and 
radiation. Conduction mechanism is a collision of molecules causes the thermal energy to be 
transferred from one molecule to other one molecule. In this heat transfer process, the very 
energetic molecules will lose their energy while the lower energy molecules will get the more 
energy. In convection mechanism, it only occurs when the energy in macroscopic flow in fluid was 
associated with a parcel. Then, the fluid was converted to another region of space. In this case, it 
also can be called as an unsteady state behaviour. The radiation mechanism happens when the 
molecular vibrate and give an electromagnet radiation which certain amount to the other molecular. 
The radiation behaviour transmits the energy throughout the space and vacuum containing. 

 
These three mechanisms have a potential to generate the instantaneous values of temperature at all 
points of the medium of interest and also called as a temperature distribution or field. The unsteady 
temperature distribution appears when medium’s temperature not only varies from point to point, 
but also depends on time. In time domain, the temperature at a various points in a medium can be 
changed and then the internal energy of the molecular also changed. A steady state temperature 
distribution occurs when a temperature at a given point never varies with time and this type is called 
as a space coordinates only.  

 
The temperature distribution by governing equations also called a three dimensional. This equation 
of temperature is describes as a function of three space coordinates, . Therefore, if 
the points of a medium with equal temperatures are connected, the resulting surfaces are called 
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isotherms on the place surface. Important to note that the two isothermal surfaces never cut each 
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respectively (Kreysig, 2006), (Howard et al., 2003). Fourier series of all dimension is a general type 
of summation process under which the convergence or non-convergence of the corresponding 
partial sums at a given point depend only on the behaviour of the function at given point, and that 
continuity of the function at the point is sufficient for convergence (Bochner, 1935). Fourier series 
has been used for solving many heat transfer problems. Maria and Power (2000) was developed an 
efficient BEM scheme for the numerical solution of two-dimensional heat problems. The double 
Fourier series was rewritten using Green function that obtained by the images method. The double 
Fourier series is use in the domain integral of the integral representation formula to transform such 
integral into equivalent surface integrals. Maksimovich and Tsybul''skii (2004) determined 
nonstationary nonaxisymmetric temperature fields in bodies of revolution appearing on heating by 
internal heat sources through and due to convective heat exchange with an external medium. The 
solution of the problem is represented in the form of a Fourier series in an angular coordinate with 
coefficients being determined by a method of boundary elements. 

  . Therefore, if the points of a 
medium with equal temperatures are connected, the resulting surfaces 
are called isothermal surfaces. This intersection of isothermal surfaces 
with a plane yields a family of isotherms on the place surface. Important 
to note that the two isothermal surfaces never cut each other since there 
are no part of the medium can have two different temperatures at the 
same time, respectively (Kreysig, 2006), (Howard et al., 2003). Fourier 
series of all dimension is a general type of summation process under 
which the convergence or non-convergence of the corresponding partial 
sums at a given point depend only on the behaviour of the function at 
given point, and that continuity of the function at the point is sufficient 
for convergence (Bochner, 1935). Fourier series has been used for solving 
many heat transfer problems. Maria and Power (2000) was developed 
an efficient BEM scheme for the numerical solution of two-dimensional 
heat problems. The double Fourier series was rewritten using Green 
function that obtained by the images method. The double Fourier series 
is use in the domain integral of the integral representation formula to 
transform such integral into equivalent surface integrals. Maksimovich 
and Tsybul’’skii (2004) determined nonstationary nonaxisymmetric 
temperature fields in bodies of revolution appearing on heating by 
internal heat sources through and due to convective heat exchange 
with an external medium. The solution of the problem is represented 
in the form of a Fourier series in an angular coordinate with coefficients 
being determined by a method of boundary elements.
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2.0 fourIer serIes strategy

Fourier series is a one method to analyze the periodic phenomenon 
and they occur quite frequently in engineering and elsewhere such as 
in rotating of machines, alternating electric currents or the motions of 
planets. Fourier series is also called as a Trigonometric series and it 
represent in periodic functions. The function on trigonometric can be 
defined from 
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4.0 result anD DIsCussIon

Un(x,y)=-2T/pi * s um [ (cos  nx-1)s in nx s inh ny / n s inh npi ]
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FIGURE 2
Temperature contour of thin square metal plate
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FIGURE 3
 Isotherms line of thin square metal plate

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3  

x

 

y

20

40

60

80

100

120

FIGURE 4
Two dimensional of thin square metal plate
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FIGURE 5
Three dimensional of thin square metal plate

Figure 2 shows the temperature contour of thin square metal plate. It can 
be seen that heat is transfer from high temperature to low temperature. 
The direction of heat transfer is due to temperature setting at the 
boundary condition. Left and right edges are set as cold (T=0) and the 
bottom edge set as an adiabatic boundary condition  and the 
top edge is set at temperature T. Isotherm lines was plotted in Figure 
3, it shows isotherm move out from the bottom edge. This is due the 
adiabatic boundary condition. At the left and right edges of thin plate, 
the isotherm lines keep parallel with these edges. This occurs due to left 
and right edges of thin plate was set as a cold (T=0). Figure 4 and Figure 
5 show the two and three dimensional of temperature distribution of 
thin square metal plate. Figure 5 clearly shows the steady state heat 
transfer conditions. At steady state condition, heat transfer from the 
top edge of thin square metal plate is equal to heat transfer out from 
bottom edge of thin square metal plate.

5.0 ConClusIon

Fourier series analysis is also known as a trigonometric series analysis. 
This series has a potential to solve the analytical solution on temperature 
distribution of plate.

Temperature distribution can be distributed independently according 
to the adiabatic phenomenon. This phenomenon is based on the time 
domain.
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