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ABSTRACT

Structural titanium alloys are coming in for increased use because they 
are light, ductile and have good fatigue and corrosion-resistance properties 
As a result; more manufacturing engineers are learning that machining 
these alloys can be a tricky job due to their unique physical and chemical 
properties. The problems are worsened when machining with the low-
rigidity part which makes the precision difficult to master. This paper 
consist of two parts, a new CAD/CAE/CAM integrated methodology for 
predicting the surface errors when machining a thin-wall low rigidity 
component and secondly, the statistical analysis to determine the correlation 
between a criterion variable (form errors) and a combination of a predictor 
(cutting parameters and component attributes). The proposed model 
would be an efficient means for analysing the root cause of errors induced 
during machining of thin-wall parts and provide an input for downstream 
decision making on error compensation. A set of machining tests have been 
done in order to validate the accuracy of the model and the results between 
simulation and experiment were found in a good agreement

KEYWORDS: CAD/CAE/CAM, Thin-walled work piece, Titanium 
alloys, Deflection analysis

1.0 introDUction

The aerospace industry is the single largest market for titanium 
products primarily due to the exceptional strength to weight ratio, 
elevated temperature performance and corrosion resistance. Titanium 
applications are most significant in jet engine and airframe components 
that are subject to temperatures up to 1100° F and for other critical 
structural parts [1]. Usage is widespread in most commercial and military 
aircraft. Titanium is also used in spacecraft where the many benefits 
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of titanium are effectively utilized. As new titanium products, alloys 
and manufacturing methods are employed by the aircraft industry, the 
use of titanium will expand. Today the use of precision castings and 
machining technique are making it possible for more complex shaped 
component to be made in one piece to replace inefficient assembly of 
part into structures. These components have the characteristics of thin-
wall monolithic part which typically being manufacture by machining 
the features out of one large titanium block.

Thin-wall machining of monolithic parts allows for higher quality and 
precise parts in less time, impact business issues including inventory 
and Just-In-Time (JIT) manufacturing. Because of the poor stiffness of 
thin-wall part, deformation is more likely to occur in the machining of 
thin-wall part which resulting a dimensional form errors. In current 
industry practice, the resulting errors are usually compensated through 
one or more of the following techniques: (i) using a repetitive feeding 
and final ‘float’ cut to bring the machined surface within tolerance; (ii) 
manual calibration to determine ‘tolerable’ machining conditions; and 
(iii) a lengthy and expensive trial and error numerical control validation 
process [2]. Noticeably all of these existing techniques have a tendency 
to lower productivity. With the forecast of 13,000 new aircraft will be 
manufacture over the next 20 years, the need for more cost effective 
manufacturing method for titanium monolithic component is imminent. 
Therefore, the prediction of resulting surface errors when machining 
thin-wall monolithic component is crucial in order to increase the part 
accuracy and productivity.

Accuracy of machined components is one of the most critical 
considerations for many manufacturers especially in aerospace industry 
where most of the part used a thin-walled structure. Error comes from 
deformation of thin-walled during machining and has been largely 
ignored by CAD/CAM software developers. The strong demand of 
titanium monolithic component usage has attracting many researchers 
in this field especially to improve the manufacturing efficiency. Current 
problems in thin-walled machining are that most of these works were 
conceptual and considered only parts with a simple geometry such as 
rectangular plate. This is due to the nature of the limitation in design 
flexibility to create complex part in FEA software. Alternatively, the 
complex geometry often been generated from CAD software and 
transferred to the FEA software with a neutral database form such as 
IGES, DXF, VDA, STEP and STL. However, owing to the exchanging 
data of different platform can cause some problems such as loss of data 
organization, translation inaccuracies, change in number of entities 
and excessive file size growth. Hence, the need to perform analysis in 
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same working environment is essential to minimize the possible error 
when exchanging data and to maintain associativity with the master 
design. Associativity includes time for remeshing the product model 
for analysis, the iterative loop of computing forces and deflections. This 
is not practical when the technique is used on shopfloor. 

This paper proposes a new model for predicting the part deflection 
when machining thin-walled work piece. The paper consist of two 
parts, first, an integrated CAD/CAE/CAM methodology for predicting 
the surface errors when machining a thin-wall component and 
secondly, the statistical analysis to determine the correlation between 
a criterion variable (part deflection) and a combination of a predictor 
(cutting parameters and component attributes). The system integration 
consists of machining load computational model from the machining 
parameter, feature based geometry model, material removal model, 
deflection analysis model and NC machining verification model. The 
proposed CAD/CAE/CAM methodology is implemented with CATIA 
V5 platform using the Mechanical Design workbench, Generative 
Structural Analysis workbench, Advanced Meshing workbench and 
Machining workbench. 

2.0  literatUre revieW

There were few reported work been done in predicting the deformation 
of thin-wall part. Budak and Altintas [3] used the beam theory to 
analyse the form errors when milling using slender helical endmill for 
peripheral milling of a cantilever plate structure. The slender helical 
endmill is divided into a set of equal element to calculate the form 
errors acting by the cutting forces on both tool and the workpiece. 
Kline et.al. [4] used a thin-wall rectangular plate element model 
clamped on three edges. He used an equivalent concentrated force to 
calculate the deflection of the tool and the work piece. The form errors 
are obtained by summing the tool and the work piece deflection. The 
effects of workpiece and cutter dynamic deflections on the chip load 
are proposed by Elbastawi and Sagherian [4]. Included in their model 
is the tracking of the changing of dynamics stiffness of workpiece 
geometry. In addition, the effects of cutter deflection for estimating the 
instantaneous uncut chip thickness were proposed by Sutherland and 
Devor [5].  Later, Tsai and Liao [6] developed an iteration schemes to 
predict the cutting forces and form error on thin-wall rectangle plate. 
The cutting force distribution and the cutting system deflections are 
solved iteratively by modified Newton-Raphson method. Ratchev 
et.al. [7] investigated the modelling and simulation environment 
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for machining low-rigidity components. Later in his work, Ratchev 
et.al. [8] modelled the material removal process using voxel-based 
representations by cutting through the voxels at the tool/part contact 
surface and replacing them with equivalent set of mesh. He used 
Aluminium Alloys 6082 for the experimental analysis and verification. 
Rai and Xirouchakis [9] consider the effects of fixturing, operation 
sequence and tool path in transient thermo-mechanical coupled milling 
simulation of thin-walled components. Recently, Izamshah et.al. [10] 
adopted the Lagrangian method in his machining simulation, in which 
each individual node of the mesh follows the corresponding material 
particle during motion. The workpiece is modelled as a plastic object so 
that the material can be deform and cut by the endmill teeth.

Despite of several significant works on modelling thin-wall machining 
that has been developed, there still a requirement for more efficient 
approach on modelling the thin-wall machining especially for 
minimizing the analysis time from initial part creation to analysis 
result. The advantages of the proposed model over previous work 
are the integration between CAD/CAE/CAM, fast design-analysis 
loop and the flexibility to create complex finite element models while 
maintaining associativity with the master design, thereby avoiding 
time-consuming and error-prone transfer of geometry. 

3.0   MoDelling anD siMUlation systeM 
architectUre

The proposed modelling and simulation system architecture for 
machining thin-wall components is shown in Figure 1. The system 
consist of several model, namely, machining load computational 
model derived from the machining parameter, feature based geometry 
model, material removal model, deflection analysis model and NC 
machining verification model. The methodology is performed within 
the CAD environment and the analysis model is fully associative 
with the CAD geometry and specification. MATLAB software was 
used in machining load computational model while others models 
were implemented using CatiaV5 software using Mechanical Design 
workbench, Advanced Meshing workbench and Generative Structural 
Analysis workbench. The simulation is perform by automate the task 
for modelling solids object, material removal and structural analysis 
with CatiaV5 through the use of macros, with Windows as the operating 
system and Visual Basic as the programming language In addition 
multiple regression technique is used to perform the statistical analysis 
to determine the correlation between a criterion variable; part deflection 
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and a combination of predictor variables.  Finally, both models were 
validating with a set of machining tests. The methodology consists of 
several procedures with different functions as follows:

Machining load computational model 

In the machining load computational model, the machining parameters 
and tool geometry, namely, cutting speed (rpm), radial depth of cut, 
axial depth of cut, feed rate (mmpt), tool diameter, helix angle (β) and 
specific cutting forces (Kt and Kr) are used as an input to calculate the 
machining loads. The procedure to calculate the machining load is 
described later in Section 3.1. The calculated machining loads is stored 
and saved in a native ASCII file format and will be used as an input in 
the deflection analysis model.

 4
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the entry of the workpiece and the material which is coincidence with the cutter shape are remove 
and saved as a new CATPart file. Once the cutter feed position is defined, the component feature 
will be input to Catia Advanced Meshing Tool workbench for generation of associative mesh for 
the solid component. At this stage, global parameters such as the shape and the size of the elements 
needs to be specify to perform the finite element analysis.  
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feature based geometry model

The component feature attributes such as the initial workpiece 
dimensions and material properties are created in the Catia Mechanical 
Design workbench. The part is created by automating the task for 
modelling solids object with Catia V5 through the use of macros, with 
Windows as the operating system and Visual Basic as the programming 
language. By using a simple form the dimension are enter which 
define the geometry of the part (length, thickness and height). This 
application automatically and immediately creates the part compare 
with the manual process that would require construction of lines and 
generation of solid model. The created component is saved in CATPart 
file format and work as a master design. Any changes and update of 
material removal need to be done in this master design. 

Material removal model

To model the material removal process during machining, the cutter 
shape and the cutter path that is coincidence with the workpiece 
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material will be remove using extrude (cut) and array function in 
the Catia Mechanical Design workbench as shown in Figure. 2. For 
the first step, the cutter is set at the entry of the workpiece and the 
material which is coincidence with the cutter shape are remove and 
saved as a new CATPart file. Once the cutter feed position is defined, 
the component feature will be input to Catia Advanced Meshing Tool 
workbench for generation of associative mesh for the solid component. 
At this stage, global parameters such as the shape and the size of the 
elements needs to be specify to perform the finite element analysis. 
Deflection analysis model 

Catia Generative Structural Analysis workbench are use to perform 
a static analysis for part deflection prediction. At this phase analysis 
information such as nodes, elements, material properties, boundary 
conditions and the calculated machining load will be input to calculate 
the deflection. The procedure to calculate the part deflection is described 
later in Section 3.2. The FEA results which contain the elements and 
nodes values is stored and saved in a native ASCII file format and saved 
in CATAnalysis file and stored in a knowledge-based template. The cutter 
feed position is then move to the next position and the material on 
the new feed step will be removed to perform the subsequent analysis. 
Finally, after repeating this procedure at different location along the 
feed direction, the complete surface form errors of the component are 
obtained and are used in Catia Machining workbench for tool path 
compensation and NC verification. 

NC machining verification model

Once the complete surface form errors of the thin-wall are obtain, the 
tool paths can be corrected to compensate for machining error. The 
compensation is done by mirroring the surface error in the opposite 
direction of the wall deflection along the feed direction. On the other 
hand, the tool needs to be tilt following the compensated curve along 
the feed direction. The compensated tool path, which contains the 
coordinate values are transfer to the Catia Machining workbench to 
generate the NC codes.
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FIGURE 2: CAD based material removal model for machining. 
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the tool at a particular instant are obtain by summing the force components acting on each 
individual discretized element [16, 17, 18].  
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As shown in Figure 3, the machining loads acting on a helical flute 
endmill are equally discretized into a finite number of elements along 
the tool axis. The total cutting loads (Fx, Fy and Fz) acting on the tool at a 
particular instant are obtain by summing the force components acting 
on each individual discretized element [16, 17, 18]. 
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where r is the tool diameter, γ is helix angle and db is the element thickness. Rearranging Eqs. (3) 
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where ( )φjlz  and ( )φjuz  are the lower and upper axial engagement limits of the in cut immersion of 
the flute j. From Eqs. (5) the instantaneous cutting forces acting on the whole endmill can be 
obtained, which are used as the input for fea to compute the deflection of the workpiece.  
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The structural of the thin-wall workpiece is modelled with the three-dimensional twenty-node 
parabolic hexahedron solid element as shown in Figure 5. Parabolic hexahedron solid element is 
preferred since the thickness of the wall is very thin and the change in structural properties of the 
wall due to material removed is very important for accurate prediction of the wall deflections [16, 
17]. For the three-dimensional element, each node has three degrees of freedom, i.e, three 
displacements (δx, δy and δz) and the displacements within each element are interpolated by the 
nodal values [18].  
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used as the input for fea to compute the deflection of the workpiece.
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3.2 finite element modelling of thin-wall workpiece

The structural of the thin-wall workpiece is modelled with the three-
dimensional twenty-node parabolic hexahedron solid element as 
shown in Figure 5. Parabolic hexahedron solid element is preferred 
since the thickness of the wall is very thin and the change in structural 
properties of the wall due to material removed is very important for 
accurate prediction of the wall deflections [16, 17]. For the three-
dimensional element, each node has three degrees of freedom, i.e, 
three displacements (δx, δy and δz) and the displacements within 
each element are interpolated by the nodal values [18]. 
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Figure 6 shows the thin-wall component model for deflection 
calculations. The initial wall thickness ti is reduced to tc at the 
transient zone where the cutter flutes enter and exit the material 
in the milling process. The displacements of the whole structure 
component are obtained by assembling and solving the finite 
element equations for each element together as follows:
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between a criterion variable; part deflection and a combination of a predictor variables namely 
speed, feed rate, radial depth of cut, wall thickness, wall height and wall length. It can be used to 
analyse data from any of the major quantitative research designs such as causal-comparative, 
correctional and experimental. This method is also able to handle interval, ordinal, or categorical 
data and provide estimates both of the magnitude and statistical significance of the relationship 
between variables [15]. The multiple regression models can be expressed as: 
 
       yD1, D2, D3, D4 ,D5 = β0 + βSS + βFF + βRDOCRDOC + βWPTWPT + βWPHWPH + βWPLWPL       (7) 
 
where y = displacement (µm) at D1, D2, D3, D4 and D5 
     S = Speed (rpm) 
     F = Feed rate (mmpt) 
  RDOC = Radial depth of cut (mm) 
     WPT = Workpiece thickness (mm) 
     WPH = Workpiece height (mm) 
      WPL = Workpiece length (mm) 
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to determine the correlation between a criterion variable; part deflection 
and a combination of a predictor variables namely speed, feed rate, 
radial depth of cut, wall thickness, wall height and wall length. It can 
be used to analyse data from any of the major quantitative research 
designs such as causal-comparative, correctional and experimental. 
This method is also able to handle interval, ordinal, or categorical data 
and provide estimates both of the magnitude and statistical significance 
of the relationship between variables [15]. The multiple regression 
models can be expressed as:
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The general null hypotheses was described as the effects of speed, feed 
rate, radial depth of cut, workpiece thickness, workpiece height and 
workpiece length on displacement do not significantly differ from zero.  
The null hypotheses and alternative hypotheses can be written as:
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The general null hypotheses was described as the effects of speed, feed rate, radial depth of cut, 
workpiece thickness, workpiece height and workpiece length on displacement do not significantly 
differ from zero.  The null hypotheses and alternative hypotheses can be written as: 
 

Ho =  βS = βF = βRDOC = βWPT = βWPH = βWPL = 0 
Ha = at least one of the β does not equal to zero 

   
The regression analysis is verified by using the residual plot graph, which shows the residuals on 
the vertical axis and the independent variable on the horizontal axis. If the points in a residual plot 
are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the 
data; otherwise, a non-linear model is more appropriate. 
 
4.0  Numerical and Experimental work 

The proposed CAD/CAE/CAM integrated methodology for minimizing the surface errors when 
machining a thin-wall low rigidity component was experimentally tested by comparing the 
simulation results with the results of experiment for an identical set of test components. The 
geometry of the component used in the simulation and experiment is shown in Figure 7. Twenty-
node parabolic hexahedron solid element is used to discretized the component for FE model. Only 
the bottom face of the component is clamped and the other four sides are free. The authors have 
tested three uniform finite element meshes for the component wall, 100x1x10, 200x2x20 and 
300x4x40 (number of elements in X-direction) x (number of elements in Y-direction) x (number of 
elements in Z-direction), the numerical results for the 200x2x20 and 300x4x40 meshes were being 
very close. Hence, 200x2x20 is adopted as the finite element mesh to save the computational time. 
The component was predicted and measured at 30 equally space at one side of the wall along the 
feed direction. The radial depth of cut is 0.3 mm and the axial depth of cut is 15 mm.  

 

  
FIGURE 7: Work piece dimension for simulation and experimental. 
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The experimental set-up is shown in Figure 8. All experimental tests 
were performed on a HAAS VF1 vertical machining center. Three 
component Kistler dynamometer (type 9257B) and Kistler charge 
amplifier (type 5070A) are used to measure the cutting loads, while 
National Instrument DAQ card is used to acquire the signal. The wall 
deflection is measured using three Lion Precision ECL 130 inductive 
displacement sensors. The sensors are mounted at three different equal 
locations (37.5, 75 and 112.5 mm) at the back of the workpiece. Both the 
signals from the dynamometer and displacement sensors are then been 
analyse using LabVIEW 8.5.1.
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Chemistry  N C H O Fe Al V Ti Other elements 
% w/w, min.  - -  -  -  -           5.50       3.50  -            - 
% w/w, max.             0.05        0.10      0.0125     0.20       0.30        6.75       4.50     Balance               0.40
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The workpiece material used in the simulation and experimental is 
annealed alpha-beta titanium alloy, Ti-6Al-4V. The chemical composition 
and mechanical properties of the material is shown in Table 1 and 2, 
respectively. Table 3 shows the specification of carbide flat end mills 
used in the experiment. To perform the multiple regression analysis, 
a set of 27 runs on titanium alloys were generated from Section 3.2. 
The cutting parameters data were obtained from the industrial partner 
Production Parts Pty. Ltd. Australia, for finishing cycle on machining 
titanium alloys material. Table 4 shows the 6-Factors 3-Level design 
of experiment for the multiple regression analysis. The criterion 
variable are calculated at five different location along the workpiece 
feed direction (i.e. D1=0, D2=1/4WPL, D3=1/2WPL, D4=3/4WPL and 
D5=WPL). A commercial statistical package SPSS 17.0 was used to do 
the regression analysis.
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TABLE 2: Mechanical properties of Ti-6Al-4V alloy at room 
temperature.
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TABLE 4: Design of experiment for the multiple regression analysis. 
 Level 1 Level 2 Level 3 

Speed (rpm) 4244 4509 4774 

Feed rate (mmpt) 0.02 0.05 0.08 

Radial depth of cut (mm) 0.1 0.2 0.3 

WP Thickness (mm) 1.5 2 2.5 

WP Height (mm) 5 10 15 

WP Length (mm) 60 90 120 

 

5.0  Cutting loads validation 
 

MATLAB 7.7 was used for the machining loads computational as described in Section 3.1. To 
validate the cutting loads model, the predicted forces are compared with measured forces for 
finishing cycle. As in Section 3.1, the milling forces can be transformed in x, y and z. However, for 
the case of thin-wall machining, the force acting in the opposite direction of the wall is specifically 
considered as it has major impact on the wall deflection, which in this case is Fy. The wall thickness 
is to be reduced from 1.8 mm to 1.5 mm with 3500 rpm spindle speed and a feed rate of 0.05 mm 
feed per tooth which is constant along the feed direction. Others machining parameters are wall 
height is 17 mm, axial depth of cut is 15 mm, radial depth of cut is 0.3 mm and the work piece 
material is titanium alloys. Figure 9 shows the instantaneous predicted and measured force Fy for 
one cutter revolution. As it can be clearly observed, both the values between predicted and measured 
force are in a good agreement. The calculated machining loads will be use as an input for the FEA 
to calculate the deflection of the work piece during machining. 

D d Ap H L Flute Ha° Rd° Shank Ch 
6.00 6.00 14.00 20.00 57.00 4 38.0 5.0 C 0.25X45 

  Density Young’s modulus           Poisson ratio    Yield strength        Hardness         Elongation  
  [kg/m3]         [GPa]                        [MPa]                     [HB]                  [%] 
    4430         113.8    0.34          880                          334                         14  

TABLE 3: Cutting tool specification.
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As in Section 3.1, the milling forces can be transformed in x, y and z. 
However, for the case of thin-wall machining, the force acting in the 
opposite direction of the wall is specifically considered as it has major 
impact on the wall deflection, which in this case is Fy. The wall thickness 
is to be reduced from 1.8 mm to 1.5 mm with 3500 rpm spindle speed 
and a feed rate of 0.05 mm feed per tooth which is constant along the 
feed direction. Others machining parameters are wall height is 17 mm, 
axial depth of cut is 15 mm, radial depth of cut is 0.3 mm and the work 
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piece material is titanium alloys. Figure 9 shows the instantaneous 
predicted and measured force Fy for one cutter revolution. As it can 
be clearly observed, both the values between predicted and measured 
force are in a good agreement. The calculated machining loads will be 
use as an input for the FEA to calculate the deflection of the work piece 
during machining.

 12

 
 FIGURE 9: Calculated cutting force for one cutter revolution. 

 

5.1 Part deflection validation 
 

Figure 10 shows the displacement values for three sensors between simulation and experiment. The 
cutter feed step is set at 30 equally space location at one side of the wall along the feed direction. 
The material from the previous feed step need to be removed once the cutter move to the next feed 
step. Table 5 shows the errors calculation between predicted and measured value. It can be seen that 
both the displacement obtained by simulation closely match the displacement that are obtained by 
experiment. The agreement value between predicted and measured is between 80.3% and 99.9%. 
Figure 11 shows the simulation result of the displacement magnitudes at the middle location of 
cutter feed step. From the cut plane analysis of the wall, it shows that the form errors are smallest at 
the bottom of the part.  The form errors magnitudes increase towards the middle of the part and 
decrease towards the end of the part, where the wall flexibility decreases. Due to the decreasing 
stiffness of the wall as a result of material removal, there is an increasing value of form errors 
between two regions (start and end) in the feed direction. To a large extent, the more flexible the 
wall, the higher surface errors result during cutting. Once the deflection of the work piece is 
established, the tool path is optimised by recalculating the coordinates of the cutter. To compensate 
the resulting profile error, the cutter location needs to be modified from the initial position to the 
compensated position by a distance of the resulting displacement value at certain cutter feed 
position.  
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5.1 Part deflection validation

Figure 10 shows the displacement values for three sensors between 
simulation and experiment. The cutter feed step is set at 30 equally 
space location at one side of the wall along the feed direction. The 
material from the previous feed step need to be removed once the 
cutter move to the next feed step. Table 5 shows the errors calculation 
between predicted and measured value. It can be seen that both the 
displacement obtained by simulation closely match the displacement 
that are obtained by experiment. The agreement value between 
predicted and measured is between 80.3% and 99.9%. Figure 11 shows 
the simulation result of the displacement magnitudes at the middle 
location of cutter feed step. From the cut plane analysis of the wall, 
it shows that the form errors are smallest at the bottom of the part.  
The form errors magnitudes increase towards the middle of the part 
and decrease towards the end of the part, where the wall flexibility 
decreases. Due to the decreasing stiffness of the wall as a result of 
material removal, there is an increasing value of form errors between 
two regions (start and end) in the feed direction. To a large extent, the 
more flexible the wall, the higher surface errors result during cutting. 
Once the deflection of the work piece is established, the tool path is 
optimised by recalculating the coordinates of the cutter. To compensate 
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the resulting profile error, the cutter location needs to be modified from 
the initial position to the compensated position by a distance of the 
resulting displacement value at certain cutter feed position. 
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FIGURE 10: Comparison between simulation and experiment of displacement along the 
workpiece length. 

 
TABLE 5: Error calculations between prediction and measured value. 
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0 1.839 1.701 91.9 0.001 0.001 87.1 1.82E-04 1.98E-04 91.8 

5 9.135 9.880 92.5 0.006 0.007 88.5 3.96E-04 3.37E-04 82.5 
10 22.841 23.164 98.6 0.044 0.050 88.1 1.94E-03 1.67E-03 83.8 
15 36.505 37.627 97.0 0.175 0.208 84.1 3.56E-03 3.96E-03 89.9 

20 61.598 61.419 99.7 0.427 0.362 82.0 6.29E-03 6.77E-03 92.9 

25 86.071 85.222 99.0 1.016 1.201 84.6 1.01E-02 1.12E-02 89.9 

30 116.508 116.029 99.6 2.625 3.035 86.5 1.45E-02 1.51E-02 96.3 

35 119.971 121.016 99.1 5.014 5.676 88.3 1.78E-02 1.72E-02 96.4 

40 107.952 107.357 99.4 12.702 13.234 96.0 1.97E-02 1.72E-02 85.5 
45 82.116 81.632 99.4 21.805 22.047 98.9 2.20E-02 2.22E-02 98.8 

50 58.810 58.456 99.4 35.995 36.286 99.2 0.118 0.147 80.3 

55 36.920 37.285 99.0 55.582 55.121 99.2 0.259 0.312 83.0 

60 21.694 21.642 99.8 82.868 82.075 99.0 3.415 3.594 95.0 

65 14.727 14.155 96.0 108.051 107.861 99.8 5.909 6.051 97.7 

70 7.608 7.816 97.3 120.119 123.653 97.1 6.603 6.731 98.1 
75 5.280 5.156 97.6 120.017 121.749 98.6 11.757 11.940 98.5 

80 3.654 3.724 98.1 96.585 95.843 99.2 17.924 18.047 99.3 

85 2.750 2.798 98.3 68.106 67.111 98.5 29.754 29.788 99.9 
90 2.291 2.153 93.6 45.251 44.592 98.5 48.877 48.023 98.2 

95 3.35E-02 3.49E-02 95.9 27.389 27.602 99.2 72.829 72.790 99.9 

100 2.68E-03 2.82E-03 95.1 17.132 17.359 98.7 101.257 100.619 99.4 
105 1.25E-03 1.41E-03 88.7 9.381 9.656 97.2 119.910 122.700 97.7 

110 1.22E-03 1.24E-03 98.4 6.644 6.908 96.2 119.689 122.300 97.9 

115 9.34E-04 9.53E-04 98.0 3.392 3.487 97.3 107.051 107.523 99.6 

120 6.18E-04 6.86E-04 90.1 2.043 2.002 98.0 80.345 80.461 99.9 

125 3.72E-04 3.96E-04 93.9 1.493 1.583 94.3 53.641 53.071 98.9 

130 1.97E-04 2.02E-04 97.5 0.906 1.109 81.7 27.968 28.422 98.4 
135 1.82E-04 1.90E-04 95.8 0.015 0.013 90.3 14.252 14.131 99.1 

140 1.78E-04 1.81E-04 98.3 0.003 0.003 85.4 2.445 2.455 99.6 

150 1.64E-04 1.61E-04 98.1 0.0025 0.00247 98.8 1.722 1.699 98.6 

FIGURE 10: Comparison between simulation and experiment of 
displacement along the workpiece length.

TABLE 5: Error calculations between prediction and measured value.
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FIGURE 11: (a) Machining simulation for displacement analysis of the test part at the   

middle location of cutter feed. (b) Cut plane analysis of the part. (c) Back 
view of the part. 

 
5.2 Multiple regression analysis 
 
A set of 27 runs were generated from Section 3.2 to perform the regression analysis. Table 6 shows 
the training data set for the parameters and the displacements at five different locations along the 
cutter feed position. Assumptions of normality and independence of residuals were first checked 
using a normal probability and residual plot. The normal probability plot of the residuals for 
displacement at D1, D2, D3, D4 and D5 were shown in Figure 12. In this plot, the actual data are 
ranked and sorted, and an expected normal value is computed and compared with an actual normal 
value for each case. As shown in Fig. 12, the data are spread roughly along the straight line which 
indicates that the normal distribution of residuals was satisfied.  
 

 

FIGURE 12: Normal probability of residuals for D1, D2, D3, D4 and D5. 
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TABLE 6: Training data set for regression analysis.
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TABLE 6: Training data set for regression analysis. 
 

SPEED 
(rpm) 

FEED 
(mmpt) 

RDOC 
(mm) 

WP [t] 
(mm) 

WP [h] 
(mm) 

WP [l] 
(mm) 

D1 
(µm) 

D2
(µm) 

D3 
(µm) 

D4
(µm) 

D5 
(µm) 

4244 0.02 0.1 1.5 5 60 0.0835 0.6730 0.6770 0.6740 0.0783 

4244 0.02 0.1 1.5 10 90 0.1060 2.6900 2.7300 2.6900 0.0935 

4244 0.02 0.1 1.5 15 120 0.1230 6.5200 6.7300 6.5900 0.1060 

4244 0.05 0.2 2 5 60 0.1240 0.7620 0.7670 0.7560 0.1290 

4244 0.05 0.2 2 10 90 0.1540 2.7900 2.8200 2.7800 0.1360 

4244 0.05 0.2 2 15 120 0.1750 6.6000 6.7500 6.6000 0.1480 

4244 0.08 0.3 2.5 5 60 0.1470 0.6780 0.6850 0.6780 0.1474 

4244 0.08 0.3 2.5 10 90 0.1830 2.3000 2.3200 2.2900 0.1540 

4244 0.08 0.3 2.5 15 120 0.2040 5.2600 5.3800 5.2700 0.1640 

4509 0.02 0.2 2.5 5 90 0.0596 0.3170 0.3170 0.3180 0.0598 

4509 0.02 0.2 2.5 10 120 0.0712 1.0200 1.0200 1.0200 0.0642 

4509 0.02 0.2 2.5 15 60 0.0784 1.1200 2.2600 1.1100 0.0678 

4509 0.05 0.3 1.5 5 90 0.2500 1.6500 1.6400 1.6600 0.1900 

4509 0.05 0.3 1.5 10 120 0.2880 6.7400 6.7700 6.7400 0.2300 

4509 0.05 0.3 1.5 15 60 0.2840 9.4200 10.014 9.4320 0.2560 

4509 0.08 0.1 2 5 90 0.1210 0.7800 0.7610 0.7810 0.1190 

4509 0.08 0.1 2 10 120 0.1470 2.7600 2.7700 2.7700 0.1280 

4509 0.08 0.1 2 15 60 0.1660 4.9200 6.3100 4.9200 0.1380 

4774 0.02 0.3 2 5 120 0.0965 0.5550 0.5510 0.5540 0.0881 

4774 0.02 0.3 2 10 60 0.1250 1.8300 2.0500 1.5000 0.0968 

4774 0.02 0.3 2 15 90 0.1450 4.5400 4.9400 4.5500 0.1050 

4774 0.05 0.1 2.5 5 120 0.0754 0.3860 0.3860 0.3860 0.0761 

4774 0.05 0.1 2.5 10 60 0.0869 1.1100 1.2300 1.1100 0.0784 

4774 0.05 0.1 2.5 15 90 0.0959 2.4200 2.8500 2.6400 0.0840 

4774 0.08 0.2 1.5 5 120 0.2230 1.7640 1.7700 1.7600 0.2180 

4774 0.08 0.2 1.5 10 60 0.2900 5.5000 7.2000 6.3000 0.2560 

4774 0.08 0.2 1.5 15 90 0.3290 9.6800 11.015 9.7600 0.2820 

 
Figure 13 shows plotting of the residuals in time order of data collection. The purpose of this graph 
is to check the independence assumption on the residuals. It is desired that the residual plot should 
contain no obvious patterns. From the graph it shows a tendency to have runs of positive and 
negative residuals indicate the existence of a certain correlation. Also the plot shows that the 
residuals are randomly dispersed in both positive and negative along the run which indicates, a 
linear regression model is appropriate for the data. 

Figure 13 shows plotting of the residuals in time order of data 
collection. The purpose of this graph is to check the independence 
assumption on the residuals. It is desired that the residual plot should 
contain no obvious patterns. From the graph it shows a tendency to 
have runs of positive and negative residuals indicate the existence of a 
certain correlation. Also the plot shows that the residuals are randomly 
dispersed in both positive and negative along the run which indicates, 
a linear regression model is appropriate for the data.
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regression analysis. From the ANOVA analysis, the R square obtained 
from the regression analysis for displacement at D1, D2, D3, D4 and 
D5 were 92.3%, 86.2%, 87.6%, 85.9% and 90.7% respectively, which 
indicated high correlation coefficient between the dependent variable 
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The results of analysis of variance (ANOVA) of the models also 
supported strong linear relationship in the models (Table 7). The 
calculated F values of the regression were 39.80, 20.80, 23.52, 20.34 and 
32.50, respectively. These high values indicated a great significance (α 
= 0.000) for the models in rejecting the null hypothesis (Ho) that every 
coefficient of the predictor variables in the model was zero. Instead, 
the alternative hypothesis, at least one of these coefficients did not 
equal to zero, was accepted. Therefore, the linear relationship between 
predicted variables and predictor variables significantly existed. The 
coefficients of all predictor variables and constants of the models are 
listed in Table 8. According to these coefficients, the multiple regression 
models for D1, D2, D3, D4 and D5 can be written as, respectively:
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D4 = 1.552 + 0.000049S + 28.746F + 5.618RDOC - 3.4204WPT + 0.48117WPH + 0.009648WPL

D4 = 0.0362 + 0.00002688S + 1.5672F + 0.29444RDOC - 0.09039WPT + 0.002717WPH - 
0.0000469WPL

TABLE 7: Analysis of variance (ANOVA).

 17

 
D4 = 1.552 + 0.000049S + 28.746F + 5.618RDOC - 3.4204WPT + 0.48117WPH + 0.009648WPL 
 
D4 = 0.0362 + 0.00002688S + 1.5672F + 0.29444RDOC - 0.09039WPT + 0.002717WPH - 

0.0000469WPL 
 

TABLE 7: Analysis of variance (ANOVA). 
Model    Source Sum of Squares DF Mean square F Sig. 

D1 Regression 0.140040 6 0.023340 39.80 0.000 

 Residual 0.011730 20 0.000586   

 Total 0.151770 26    

 R-Square 92.3     

D2 Regression 172.014 6 28.669 20.80 0.000 

 Residual 27.571 20 1.379   

 Total 199.585 26    

 R-Square 86.2     

D3 Regression 212.770 6 35.462 23.52 0.000 

 Residual 30.159 20 1.508   

 Total 242.928 26    

 R-Square 87.6     

D4 Regression 177.412 6 29.569 20.34 0.000 

 Residual 29.076 20 1.454   

 Total 206.488 26    

 R-Square 85.9     

D5 Regression 0.096431 6 0.016072 32.50 0.000 

 Residual 0.009890 20 0.000495   

 Total 0.106321 26    

 R-Square 90.7     

TABLE 8: The model coefficients. 
 D1 D2 D3 D4 D5 

Constant 0.0005 2.052 -0.633 1.552 0.03621 

S 0.00003505 -0.000102 0.000657 0.000049 0.00002688 

F 1.7070 26.624 31.672 28.746 1.5672 

RDOC 0.39878 5.952 5.503 5.618 0.29444 

WPT -0.10834 -3.3362 -3.5850 -3.4204 -0.09039 

WPH 0.004670 0.47683 0.54291 0.48117 0.002717 

WPL 0.0000339 0.010356 0.001730 0.009648 -0.0000469 
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6.0 conclUsions

Accuracy of machined components is one of the most critical 
considerations for many manufacturers especially in aerospace industry 
where most of the part used a thin-walled structure. In the current 
work, a new CAD/CAE/CAM integrated methodology for predicting 
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the surface errors when machining a thin-wall low rigidity component 
and the statistical analysis to determine the correlation between a 
criterion variable (form errors) and a combination of a predictor 
(cutting parameters and component attributes) were developed. A set 
of machining tests have been done in order to validate the accuracy of 
the model. A good agreement between simulation and experimental 
results show the validity of the proposed model in handling real-field 
problems. In addition, results from the statistical analysis showed a 
strong linear relationship between the predictor variables (S, F, RDOC, 
WPT, WPH and WPL) and the predicted variables (surface errors). 
Prediction of the surface errors due to the flexibility of the workpiece 
can be easily predicted with the proposed CAD/CAE/CAM integrated 
methodology. On the other hands, the advantages of the proposed model 
are for minimizing the analysis time i.e. integration between CAD/CAE/
CAM, fast design-analysis loop, multidiscipline collaboration and the 
flexibility to create complex finite element models while maintaining 
associativity with the master design, thereby avoiding time-consuming 
and error-prone transfer of geometry. The CAD/CAE/CAM integrated 
methodology would be an efficient means for analysing the root cause 
of errors induced during machining of thin-wall parts and provide an 
input for downstream decision making on error compensation. To a 
large extent, through the CAD/CAE/CAM model, manufacturers can 
further enhance their productivity by eliminating the need of expensive 
preliminary cutting trials often require for validating the designed 
machining process plan.
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