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ABSTRACT

This manuscript provides a detailed derivation of a full vehicle model, 
which may be used to simulate the behavior of a vehicle in longitudinal 
direction. The dynamics of a 14 degrees of freedom (14-DOF) vehicle 
model are derived and integrated with an analytical tire dynamics namely 
Calspan tire model. The full vehicle model is then validated experimentally 
with an instrumented experimental vehicle based on the driver input from 
brake or throttle pedals. Several transient handling tests are performed, 
namely sudden acceleration and sudden braking test. Comparisons of the 
experimental result and model response with sudden braking and throttling 
imposed motion are made. The results of model validation show that 
the trends between simulation results and experimental data are almost 
similar with acceptable error. An adaptive PID control strategy is then 
developed on the validated full vehicle model to reduce unwanted vehicle 
motions during sudden braking and throttling maneuver. The results show 
that the proposed control structure is able to significantly improve the 
dynamic performance of the vehicle during sudden braking and sudden 
acceleration under various conditions. The proposed controller will be used 
to investigate the benefits of a pneumatically actuated active suspension 
system for reducing unwanted vehicle motion in longitudinal direction

KEYWORDS: active suspension, dive and squat, 14 D.O.F. vehicle model, 
adaptive PID.
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1.0	INTRODU CTION

It is deemed necessary and usefull to isolate disturbance elements that 
are prevalent in many mechanical systems. A clear example can be seen 
in an automotive system in which the passengers of a car should ideally 
be isolated from vibration or shaking effects of the car’s body when the 
car hits  a bump, cornering and braking. Reffering to the characteristic 
of the vehicle’s movement in longitudinal direction, the vehicle will 
dive forward when brake is applied. This is due to the fact that, inertia 
will cause a shift in the vehicle’s center of gravity and weight will be 
transferred from the rear tires to the front tires. Similarly, the vehicle 
will squat to the rear when throttle input is applied. This is due to 
the weight transfer from the front to the rear. Both dive and squat are 
unwanted vehicle motions known as vehicle pitching (Ahmad et.al., 
2008a); (Ahmad et.al., 2008b) and (Fenchea, 2008). This motion will 
cause the vehicle becomes unstable, lack of handling performance, 
out of control and moreover may cause an accident (Bahouth, 2005). 
Although this problem is worse, the common passive suspension 
cannot be controlled to give energy to suppress the weight transfers that 
cause moment. It is because the spring damper elements are generally 
fixed and are chosen based on the design requirement of the vehicle 
(Priyandoko et.al., 2005).

To solve the problems, a considerable amount of works have been 
carried out to solve the problem both theoretically and experimentally 
(Alleyne and handrick1995; Lin and Kennelkopoulus, 1997). Through 
the combination of mechanical, electrical and hydraulic components, 
a wide range of controllable suspension systems have been developed 
varying in cost, sophistication and effectiveness. In general, these 
systems can be classified into three categories: semi-active suspensions 
(Gao et.al., 2006), active anti-roll bars (Sampson et.al, 2000) and 
active suspensions (Weeks et.al., 2000; Sam et.al., 2005). A semi active 
suspension is a passive system with controlled components usually 
the orifice or the fluid viscosity, which is able to adjust the stiffness 
of the damper. The active anti-roll bar system consists of an anti-roll 
bar mounted in the body and two actuators on each axle to cancel out 
the unwanted body motion. While the active suspension system is 
a controllable suspension that had the ability to add energy into the 
system, as well as store and dissipate it.

Investigation of active suspension systems for car models is recently 
increasing mostly because, they offer better riding comfort to passengers 
of high-speed ground transportation compared to passive and semi-
active suspension systems. The research of active suspension systems 
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are derived by optimal control theory on the assumption that the car 
model is described by a linear or approximately linear system whose 
performance index is given in the quadratic form of the state variables 
and the (Donahue, 2001); (Sampson et.al., 2002); (Sampson et.al., 2003a); 
(Sampson et.al., 2003b); (Karnopp, 1995); (Sam, 2006) and (Gao et.al., 
2006). However, nonlinear and intelligent active suspension systems 
are proposed for complicated models with no negligibly strong non-
linearity and uncertainty. Numerical and experimental results showed 
that such active suspension systems give relatively more satisfactory 
performance, but need more increasing loads to achieve active control, 
compared with the linear active suspension systems (Yoshimura et.al., 
1997a; Yoshimura et.al., 1997b; Yoshimura et.al., 2003); Yoshimura and 
Watanabe, 2003; Labaryade et.al., 2004; Kruczek et.al., 2004); (Toshio 
and Atsushi, 2004)and (Yoshimura et.al 2001). Some of the studies used 
4-DOF vehicle model (Campos et.al., 1999; Vaughan et.al., 2003), and 
7-DOF vehicle model has been investigated by Ikanega et.al., (2000), 
and Zhang et.al., (2004)

The exploration of the effectiveness active suspension system on real 
vehicle has been lead by Lotus Company at early 1980s. The company 
proposed a hydraulic active suspension system as a means to improved 
cornering in  racing cars and come out with a new electro-hydraulic 
active suspension that is used in Lotus  Excel model in 1985, but this was 
never offered to public (Watton et.al., 2001). Six years after that, Nissan 
Motor Company produce a new type of luxury car that included two 
options joined namely traction control system and the world’s first Full-
Active Suspension (FAS). It used hydraulic actuators as the controllable 
suspension and used 10 sensors to counteract body lean, nose lift and 
nose dive, and fore/aft pitch on wavy surfaces (Trevett 2002). Beside 
that Mercedes Company used Hydraulic system to eliminate body 
roll called Active Body Control system (ABC). In this application the 
conventional spring-damper unit is mounted in series with the fluid 
chamber. When the car is cornering, the springs on the outer side of the 
corner will be compressed and at the same time the fluid chamber will 
be filled to compensate for the compression of the spring. In the same 
case, BMW company also used a hydraulic system to prevent body roll 
namely Dynamic Drive. The hydraulic system is used as the element in 
the anti roll bar that can supply a torque to each side of the anti roll bar 
(Ficher and Isermann 2004; Kadir 2009).

Since the hydraulic system is widely used as the active suspension, 
Citroen Company tries to make a difference by developing an active 
suspension base on the combination of the hydraulic and pneumatic 
system namely Hydractive Suspension System and then implemented it 
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into the Citreon Xantia Model 1989 (Martens 2005). Furthermore, Bose, 
known for its high-performance audio products, has developed an 
active suspension system which uses linear electric motors that replace 
the conventional spring-damper unit to produce the force required for 
eliminating body roll and pitch. The improvement in ride quality and 
the ability to suppress roll and pitch comes at an expense of energy 
consumption. However it contrasts to a hydraulic active suspension 
because the linear motor also can function as a generator. This means 
that, when the motor has to produce a force in the opposite direction 
of its velocity, energy can be generated where normally it would be 
dissipated by a conventional damper (Kadir, 2009).

The extensive research on the active suspension have resulted many 
control strategies. The control strategies that have been proposed to 
control the active suspension system may be loosely grouped into 
linear, nonlinear, hybrid and inteligent control approaches. The linear 
control strategies are mainly based on the optimal control theory such 
as LQR, LQG, LTR and H-infinity and are capable of minimizing a 
defined performance index. Application of the LQR method in active 
suspension system has been proposed by Hrovat (1988); Tseng and 
Hrovat (1990); Esmailzadeh and Taghirad (1996); Sam et.al., (2000); and 
Su et.al., (2008). The non-linear control strategies that have been applied 
in controlling active suspension are Fuzzy logic control used by Toshio 
and Itaru (2005); March and Shin (2007); and Yoshimura et.al., (1999) 
and Sliding Mode Control (SMC) by Park and Kim (1998); Decarlo et.al., 
(1998) and Sam et.al., (2005). In terms of hybrid control strategies, PID 
Fuzzy Logic Neural Network (NN) and Genetic Algorithm (GA) have 
been applied to the active suspension system such as GA based PID 
proposed by Feng et.al., (2003) and Sliding Mode Fuzzy control technique 
proposed by Ting et.al., (1995). At the side of that, the intelligent control 
approaches have also been widely used which resulted many strategy 
like Fuzzy reasoning and a disturbance observer (Toshio and Itaru, 
2005) and adaptive Fuzzy active force control (Mailah and Priyandoko, 
2007). 

Sparked with technological sophistication nowadays, a pneumatically 
actuated active suspension (PAAS) system is proposed. The proposed 
PAAS system is used to minimize the effects of unwanted pitch and 
vertical body motions of the vehicle in the presence of braking or 
throttle input from the driver. Like those stated, the proposed active 
suspension system is the system in which the passive suspension system 
is augmented by pneumatic actuators that supply additional external 
forces. The system is developed by using four units of pneumatic systems 
that are installed between lower arms and vehicle body parallel with 
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passive suspension. The reason of using the pneumatic system is due 
to the cheap cost for implementing in the real vehicle, the availability 
of the air without cost to pay and the compressibility of the air that can 
be used as the medium to transmit force. The proposed control strategy 
for the PAAS system is the combination of Adaptive PID (APID) based 
feedback control and pitch moment rejection based feed forward 
control (Stillwel et.al., 1999; Lee et.al., 2001; Sedaghati, 2006; Fialho and 
Balas, 2002). Feedback control is used to minimize unwanted body 
pitch motions, while the feed forward control is intended to reduce 
the unwanted weight transfer during braking and throttle maneuvers. 
The forces produced by the proposed control structure are used as the 
target forces by the four unit pneumatic actuators. The reason of using 
adaptive control based PID controller is because the PID controller has 
already been proven effective in many applications where it is easy to 
maintain and easy to implement in the Online Famos.

The proposed control structure is implemented on a validated full 
vehicle model. The full vehicle model can be approximately described 
as a 14-DOF system subject to excitation from braking and throttling 
inputs. It consists of 7-DOF vehicle ride model and 7-DOF vehicle 
handling model coupled with Calspan tire model (Kasprzak et.al., 2006; 
Kadir et.al., 2008; Ahmad et.al., 2008c; Hudha et.al., 2008). MATLAB-
SIMULINK software is chosen as a computer simulation tool used to 
simulate the vehicle dynamics behavior and evaluate the performance of 
the control structure. In order to verify the effectiveness of the proposed 
controller, passive system and active system with PID controller without 
pitch moment rejection are selected as the benchmark

 This paper is organized as follows: The first section contains the 
introduction and the review of some related works, followed by 
mathematical derivations of 14-DOF full vehicle model with Calspan 
tire model in the second section. The third section presents the proposed 
control structure for the pneumatically actuated active suspension 
system. The following section explains about the validation of 14-DOF 
vehicle model with the data obtained from instrumented experimental 
vehicle. The fifth section presents the performance evaluation of the 
proposed control structure. The last section contains some conclusion.

2.0	  FULL VEHICLE MODEL WITH CALSPAN TIRE MODEL 

The full-vehicle model of the passenger vehicle considered in this 
study consists of a single sprung mass (vehicle body) connected to four 
unsprung masses and is represented as a 14-DOF system. The sprung 
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mass is represented as a plane and is allowed to pitch, roll and yaw as 
well as to displace in vertical, lateral and longitudinal directions. The 
unsprung masses are allowed to bounce vertically with respect to the 
sprung mass. Each wheel is also allowed to rotate along its axis and 
only the two front wheels are free to steer.  

2.1	 Modeling Assumptions

Some of the modeling assumptions considered in this study are as 
follows: The vehicle body is lumped into a single mass which is 
referred to as the sprung mass, aerodynamic drag force is ignored, and 
the roll centre is coincident with the pitch centre and is located just 
below the body center of gravity. The suspensions between the sprung 
mass and unsprung masses are modeled as passive viscous dampers 
and spring elements. Rolling resistance due to passive stabilizer bar 
and body flexibility are neglected. The vehicle remains grounded at 
all times and the four tires never lost contact with the ground during 
maneuvering. A 4-degree-tilt angle of the suspension system towards 
vertical axis is neglected ( = 0.998  1). The tire’s vertical behavior is 
represented as a linear spring without damping, whereas the lateral 
and longitudinal behaviors are represented with Calspan model. 
Steering system is modeled as a constant ratio and the effect of steering 
inertia is neglected. 

2.2 	V ehicle Ride Model

The vehicle ride model is represented as a 7-DOF system. It consists of 
a single sprung mass (car body) connected to four unsprung masses 
(front-left, front-right, rear-left and rear-right wheels) at each corner. 
The sprung mass is free to heave, pitch and roll while the unsprung 
masses are free to bounce vertically with respect to the sprung mass. 
The suspensions between the sprung mass and unsprung masses are 
modeled as passive viscous dampers and spring elements, while, 
the tires are modeled as simple linear springs without damping. For 
simplicity, all pitch and roll angles are assumed to be small. A similar 
model was used by Ikanega (2000).

Referring to FIGURE 1, the force balance on sprung mass is given as                                            
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where, 
Ks,fl  = front left suspension spring stiffness  
Ks,fr  = front right suspension spring stiffness  
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It is assumed that all angles are small, therefore Eq. (3) becomes; 
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where, 

a          = distance between front of vehicle and C.G. of sprung mass  
b          = distance between rear of vehicle and C.G. of sprung mass  
          = pitch angle at body centre of gravity 
         = roll angle at body centre of gravity 

flsZ ,    = front left sprung mass displacement 

frsZ ,   = front right sprung mass displacement 

rlsZ ,    = rear left sprung mass displacement 

rr,sZ    = rear right sprung mass displacement 
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where, 

a          = distance between front of vehicle and C.G. of sprung mass  
b          = distance between rear of vehicle and C.G. of sprung mass  
          = pitch angle at body centre of gravity 
         = roll angle at body centre of gravity 

flsZ ,    = front left sprung mass displacement 

frsZ ,   = front right sprung mass displacement 

rlsZ ,    = rear left sprung mass displacement 

rr,sZ    = rear right sprung mass displacement 
 

By substituting Eq. (4) and its derivative (sprung mass velocity at each 
corner) into Eq. (2) and the resulting equations are then substituted 
into Eq. (1), the following equation is obtained ;
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By substituting Eq. (4) and its derivative (sprung mass velocity at each corner) into Eq. (2) 
and the resulting equations are then substituted into Eq. (1), the following equation is 
obtained ; 
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               + prrprlpfrpfl FFFF   
 
where,  

   = pitch rate at body centre of gravity 
  sZ  = sprung mass displacement at body centre of gravity 
 sZ  = sprung mass velocity at body centre of gravity  
 Ks,f  = spring stiffness of front suspension  (Ks,fl = Ks,fr) 
 Ks,r    = spring stiffness of rear suspension  (Ks,rl =  Ks,rr) 
 Cs,f  = Cs,fl = Cs,fr  = damping constant of front suspension 
 Cs,r = Cs,rl = Cs,rr = damping constant of rear suspension 

 
Similarly, moment balance equations are derived for pitch  and roll  , and are given as ; 
 
         rsfssrsfssrsfsyy KbKaZbCaCZbKaKI ,

2
,

2
,,,, 222   

           frufsflufsflufsrsfs ZaKZaCZaKCbCa ,,,,,,,
2

,
22                   (6) 

         rrursrrursrlursrlursfrufs ZbCZbKZbCZbKZaC ,,,,,,,,,,   
         rprrprlfpfrpfl lFFlFF )()(   
 
        flufsrsfsrsfsxx ZwKCCwKKwI ,,,,

2
,,

2 5.05.05.0    
            frufsfrufsflufs ZwCZwKZwC ,,,,,, 5.05.05.0                             (7) 
            rrursrrursrlursrlurs ZwCZwKZwCZwK ,,,,,,,, 5.05.05.05.0   

            
2

)(
2

)( wFFwFF prrpfrprlpfl   

 
where, 

      = pitch acceleration at body centre of gravity 
  = roll acceleration at body centre of gravity 
Ixx = roll axis moment of inertia 
Iyy  = pitch axis moment of inertia 
w  = wheel base of sprung mass 
 

By performing force balance analysis at the four wheels, the following equations are obtained 
; 
   fsfsfssfssfsfluu wKaCaKZCZKZm ,,,,,, 5.0  
                pflflrtflufsflutfsfs FZKZCZKKwC  ,,,,,,5.0                                             (8) 
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and the resulting equations are then substituted into Eq. (1), the following equation is 
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 Ks,r    = spring stiffness of rear suspension  (Ks,rl =  Ks,rr) 
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By substituting Eq. (4) and its derivative (sprung mass velocity at each corner) into Eq. (2) 
and the resulting equations are then substituted into Eq. (1), the following equation is 
obtained ; 
 
         rsfssrsfssrsfsss bCaKZCCZKKZm ,,,,,, 222   

                frusfflufsflusfrsfs ZKZCZKbCaC ,,,,,,2                                         (5) 
              rrursrrusrrlursrlusrfrufs ZCZKZCZKZC ,,,,,,,,   
               + prrprlpfrpfl FFFF   
 
where,  

   = pitch rate at body centre of gravity 
  sZ  = sprung mass displacement at body centre of gravity 
 sZ  = sprung mass velocity at body centre of gravity  
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where, 

      = pitch acceleration at body centre of gravity 
  = roll acceleration at body centre of gravity 
Ixx = roll axis moment of inertia 
Iyy  = pitch axis moment of inertia 
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By performing force balance analysis at the four wheels, the following equations are obtained 
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   fruZ ,  = front right unsprung masses acceleration 
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rruZ ,       = rear right unsprung masses acceleration 
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2.3  Vehicle Handling Model 
 
The handling model employed in this paper is a 7-DOF system as shown in FIGURE 2. It 
takes into account three degrees of freedom for the vehicle body in lateral and longitudinal 
motions as well as yaw motion (r) and one degree of freedom due to the rotational motion of 
each tire. In vehicle handling model, it is assumed that the vehicle is moving on a flat road. 
The vehicle experiences motion along the longitudinal x-axis, the lateral y-axis, and the 
angular motions of yaw around the vertical z-axis. The motion in the horizontal plane can be 
characterized by the longitudinal and lateral accelerations, denoted by ax and ay respectively, 
and the velocities in longitudinal and lateral direction, denoted by xv and yv , respectively. 
 
Acceleration in longitudinal x-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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2.3 	V ehicle Handling Model

The handling model employed in this paper is a 7-DOF system as shown 
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vehicle body in lateral and longitudinal motions as well as yaw motion 
(r) and one degree of freedom due to the rotational motion of each tire. 
In vehicle handling model, it is assumed that the vehicle is moving on a 
flat road. The vehicle experiences motion along the longitudinal x-axis, 
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and the velocities in longitudinal and lateral direction, denoted by vx 
and vy, respectively.

Acceleration in longitudinal x-axis is defined as ;
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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Similarly, acceleration in lateral y-axis is defined as ; 
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By summing all the forces in lateral direction, lateral acceleration can 
be defined as ;
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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where xijF and yijF denote the tire forces in the longitudinal and lateral directions, respectively, 
with the index (i) indicating front (f) or rear (r) tires and index (j) indicating left (l) or right 

(r) tires. The steering angle is denoted by , the yaw rate by
.
r and tm denotes the total vehicle 

mass. The longitudinal and lateral vehicle velocities xv and 
yv can be obtained by the 

integration of yv
.

and xv
.

. They can be used to obtain the side slip angle, denoted by . Thus, 
the slip angle of front and rear tires are found as ; 
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where, f and r are the side slip angles at the front and rear tires respectively. lf and lr are 
the distance between the front and rear tire to the body center of gravity respectively. 
 

 
 

FIGURE 2: A 7-DOF Vehicle handling model 
 
To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
 
    ftfwxf Vv cos                                                                                                             (18) 
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
 
    ftfwxf Vv cos                                                                                                             (18) 

where Fxij and Fyij denote the tire forces in the longitudinal and lateral 
directions, respectively, with the index (i) indicating front (f) or rear 
(r) tires and index (j) indicating left (l) or right (r) tires. The steering 
angle is denoted by δ, the yaw rate by r and mt denotes the total vehicle 
mass. The longitudinal and lateral vehicle velocities vx  and  vy can be 
obtained by the integration of vy and vx . They can be used to obtain the 
side slip angle, denoted by α. Thus, the slip angle of front and rear tires 
are found as ;
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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where, f and r are the side slip angles at the front and rear tires respectively. lf and lr are 
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To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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.
r and tm denotes the total vehicle 

mass. The longitudinal and lateral vehicle velocities xv and 
yv can be obtained by the 

integration of yv
.

and xv
.

. They can be used to obtain the side slip angle, denoted by . Thus, 
the slip angle of front and rear tires are found as ; 
 

    f
x

fy
f v

rLv
 







 
 1tan                                                                                                (16) 

 
and 
 

    






 
 

x

fy
r v

rLv1tan                                                                                                     (17) 

 
where, f and r are the side slip angles at the front and rear tires respectively. lf and lr are 
the distance between the front and rear tire to the body center of gravity respectively. 
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To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
 
    ftfwxf Vv cos                                                                                                             (18) 

where,  af and ar are the side slip angles at the front and rear tires 
respectively. lf and lr are the distance between the front and rear tire to 
the body center of gravity respectively.
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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r and tm denotes the total vehicle 
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where, f and r are the side slip angles at the front and rear tires respectively. lf and lr are 
the distance between the front and rear tire to the body center of gravity respectively. 
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To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
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FIGURE 2: A 7-DOF vehicle handling model

To calculate the longitudinal slip, longitudinal component of the tire’s 
velocity should be derived. The front and rear longitudinal velocity 
component is given by:
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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the distance between the front and rear tire to the body center of gravity respectively. 
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To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
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By summing all the forces in lateral direction, lateral acceleration can be defined as ; 
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where, f and r are the side slip angles at the front and rear tires respectively. lf and lr are 
the distance between the front and rear tire to the body center of gravity respectively. 
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To calculate the longitudinal slip, longitudinal component of the tire’s velocity should be 
derived. The front and rear longitudinal velocity component is given by: 
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where, the speed of the front tire is, 
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    rtrwxr Vv cos                                                                                                               (20) 
 
where, the speed of the rear tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, the speed of the front tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, the speed of the front tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
 

    
   

sx

.
sys..

J
kgcmcam  




                                                                                        (25)

  

    
   

sy

.
sys..

J
kgcmcam  




                                                                                     (26) 

 

where, the speed of the rear tire is,

32 
 

where, the speed of the front tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, the speed of the front tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, the speed of the front tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, the speed of the front tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
 



zrrzrlzfrzflxfrf

xflfyfrfyflfyrrryrlryfr

yflxrrxrlxfrxfl
z

MMMMFl

FlFlFlFlFlFw

FwFwFwFwFw
J

r













sin

sincoscossin
2

sin
222

cos
2

cos
2

1..

       (24) 

where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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the longitudinal slip ratio of the rear tire is,
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, the speed of the front tire is, 
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where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, ωr and ωf are angular velocities of the rear and front tires, 
respectively and rw, is the wheel radius. The yaw motion is also 
dependent on the tire forces Fxij and Fyij as well as on the self-aligning 
moments, denoted by Mzij acting on each tire:
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, zJ  is the moment of inertia around the z-axis. The roll and pitch 
motion depend very much on the longitudinal and lateral accelerations. 
Since only the vehicle’s body undergoes roll and pitch, the sprung 
mass, denoted by ms  has to be considered in determining the effects of 
handling on pitch and roll motions as the following:
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
 

    
   

sx

.
sys..

J
kgcmcam  




                                                                                        (25)

  

    
   

sy

.
sys..

J
kgcmcam  




                                                                                     (26) 

 

32 
 

where, the speed of the front tire is, 
 
      22

xfytf vrLvV                                                                                                 (19) 
 
the rear longitudinal velocity component is, 
 
    rtrwxr Vv cos                                                                                                               (20) 
 
where, the speed of the rear tire is, 
 
      22

xrytr vrLvV                                                                                                      (21) 
 
then, the longitudinal slip ratio of the front tire is, 
 

    
wxf

wfwxf
af v

Rv
S


  under braking conditions                                                            (22) 

 
the longitudinal slip ratio of the rear tire is, 
 

    
wxr

wrwxr
ar v

Rv
S


  under braking conditions                                                                    (23) 

 
where, r and f are angular velocities of the rear and front tires, respectively and wR , is the 
wheel radius. The yaw motion is also dependent on the tire forces xijF  and yijF as well as on 
the self-aligning moments, denoted by zijM acting on each tire: 
 



zrrzrlzfrzflxfrf

xflfyfrfyflfyrrryrlryfr

yflxrrxrlxfrxfl
z

MMMMFl

FlFlFlFlFlFw

FwFwFwFwFw
J

r













sin

sincoscossin
2

sin
222

cos
2

cos
2

1..

       (24) 

where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, zJ is the moment of inertia around the z-axis. The roll and pitch motion depend very 
much on the longitudinal and lateral accelerations. Since only the vehicle’s body undergoes 
roll and pitch, the sprung mass, denoted by sm  has to be considered in determining the 
effects of handling on pitch and roll motions as the following: 
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where, c is the height of the sprung mass center of gravity to the ground, 
is the gravitational acceleration  and  
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where, c is the height of the sprung mass center of gravity to the ground, g is the gravitational 
acceleration and k ,  , k and   are the damping and stiffness constant for roll and pitch, 
respectively. The moments of inertia of the sprung mass around x-axes and y-axes are 
denoted by sxJ and syJ respectively. 
 
2.4  Braking and Throttling Torques 

For the front and rear wheels, the sum of the torque about the axis shown in FIGURE 3 are as 
follows: 
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where f and r are the angular velocity of the front and rear wheels, I is the inertia of 

the wheel about the axle, R is the wheel radius, bfT and brT are the applied braking torques, 

and afT and arT are the applied throttling torques for the front and rear wheels 
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2.5  Simplified Calspan Tire Model  
 
The tire model considered in this study is Calspan model as described in Szostak et al. 
(1988). Calspan model is able to describe the behavior of a vehicle in any driving scenario 
including inclement driving conditions which may require severe steering, braking, 
accelerating, and other driving related operations (Kadir et al., 2008). The longitudinal and 
lateral forces generated by a tire are functions of the slip angle and longitudinal slip of the tire 
relative to the road. The previous theoretical developments in Szostak et al. (1988) lead to a 
complex, highly non-linear composite force as a function of composite slip. It is convenient 
to define a saturation function, f( ), to obtain a composite force with any normal load and 
coefficient of friction values (Singh et al., 2002). The polynomial expression of the saturation 
function is presented by: 
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2.5 	 Simplified Calspan Tire Model 

The tire model considered in this study is Calspan model as described in 
Szostak et.al. (1988). Calspan model is able to describe the behavior of a 
vehicle in any driving scenario including inclement driving conditions 
which may require severe steering, braking, accelerating, and other 
driving related operations (Kadir et.al., 2008). The longitudinal and 
lateral forces generated by a tire are functions of the slip angle and 
longitudinal slip of the tire relative to the road. The previous theoretical 
developments in Szostak et.al. (1988) lead to a complex, highly non-
linear composite force as a function of composite slip. It is convenient 
to define a saturation function, f(σ), to obtain a composite force with 
any normal load and coefficient of friction values (Singh et.al., 2002). 
The polynomial expression of the saturation function is presented by:

34 
 

             
1

4

4
2

2
3

1

2
2

3
1













CCC

)(CC

F
F

)(f
z

c                                                                             (29) 

 
where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 

Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is 
the tire pressure. The values of FZT and Kα are the tire’s contact patch 
constants. The lateral and longitudinal stiffness coefficient (Ks and Kc, 
respectively) are a function of the tire contact patch’s length and normal 
load of the tire as expressed as follows:
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values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
 

               











2

2
1

102
0

2
A
FA

FAA
ap

K z
zs                                                                              (32) 

 

                FZCSF
ap

K zc /2
2

0

                                                                                             (33) 

 
Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
 

                5
0768.0

0 


pw

ZTz

TT
FF

ap                                                                                     (30) 

 

               









z

xa

F
FK

ap 1                                                                                                 (31) 

 
Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 

µo is a nominal coefficient of friction and has a value of 0.85 for normal 
road condition, 0.3 for wet road condition, and 0.1 for icy road condition. 
Given the polynomial saturation function, lateral and longitudinal 
stiffness, the normalized lateral and longitudinal forces are derived by 
resolving the composite force into the side slip angle and longitudinal 
slip ratio components:
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
 

               











2

2
1

102
0

2
A
FA

FAA
ap

K z
zs                                                                              (32) 

 

                FZCSF
ap

K zc /2
2

0

                                                                                             (33) 

 
Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
 

              





 Y

SKK

Kf
F

F

cs

s

z

y 



22'22 tan

tan                                                                            (35) 

 

              
22'22

'

tan SKK

SKf
F

F

cs

c

z

x









                                                                                    (36) 

 
Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and 
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where, C1, C2, C3 and C4 are constant parameters fixed to the specific tires. The tire’s contact 
patch lengths are calculated using the following two equations: 
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Where ap  is the tire’s contact patch, Tw is the tread width, and Tp is the tire pressure. The 
values of FZT and K  are the tire’s contact patch constants. The lateral and longitudinal 
stiffness coefficient (Ks and Kc, respectively) are a function of the tire contact patch’s length 
and normal load of the tire as expressed as follows: 
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Where the values of A0, A1, A2 and CS/FZ are stiffness constants and can be found in Table 2. 
Then, the composite slip calculation becomes: 
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µo is a nominal coefficient of friction and has a value of 0.85 for normal road condition, 0.3 
for wet road condition, and 0.1 for icy road condition. Given the polynomial saturation 
function, lateral and longitudinal stiffness, the normalized lateral and longitudinal forces are 
derived by resolving the composite force into the side slip angle and longitudinal slip ratio 
components: 
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Lateral force has an additional component due to the tire’s chamber angle, , which is 
modeled as a linear effect. Under significant maneuvering conditions with large lateral and Lateral force has an additional component due to the tire’s chamber 

angle, γ, which is modeled as a linear effect. Under significant 
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maneuvering conditions with large lateral and longitudinal slip, the 
force converges to a common sliding friction value. In order to meet 
this criterion, the longitudinal stiffness coefficient is modified at high 
slips to transition to lateral stiffness coefficient as well as the coefficient 
of friction defined by the parameter Kµ.
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input decoupling transformation is placed between the inner and outer 
loop controllers that blend the inner loop and outer loop controllers. 
The outer loop controller provides the ride control that isolates the 
vehicle’s body from vertical and rotational vibrations induced by pitch 
torque input. The inner loop controller provides the weight transfer 
rejection control that maintains load-leveling and load distribution 
during vehicle maneuvers. The proposed control structure is shown in 
FIGURE 5. 
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Equations (39), (40) and (41) can be rearranged in a matrix format as follows: 
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 
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In case of braking, the two pneumatic actuators installed in the front axle have to produce the 
necessary forces to cancel out the unwanted pitch moments, whereas the forces of the two 
pneumatic actuators at the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 
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In case of braking, the two pneumatic actuators installed in the front axle have to produce the 
necessary forces to cancel out the unwanted pitch moments, whereas the forces of the two 
pneumatic actuators at the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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For a linear system of equations y=Cx, if  mxnC ℜ∈  has a full row rank, 
then a right inverse  1−C  such as  mxmICC =−1  still exist. The right inverse 
can be computed using .  Thus, the inverse relationship of equation (42) 
can be expressed as ;
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 

 
 pcxp HaMM )(                                                                                                         (44) 
 
In case of braking, the two pneumatic actuators installed in the front axle have to produce the 
necessary forces to cancel out the unwanted pitch moments, whereas the forces of the two 
pneumatic actuators at the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 
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In case of braking, the two pneumatic actuators installed in the front axle have to produce the 
necessary forces to cancel out the unwanted pitch moments, whereas the forces of the two 
pneumatic actuators at the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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3.2	P itch Moment Rejection Loop

In the outer loop controller, APID control is applied for suppressing 
both body vertical displacement and body pitch angle. The inner loop 
controller of pitch moment rejection control is described as follows: 
during throttling and braking, a vehicle will produce a force, namely 
throttling force and braking force respectively at the body center of 
gravity. The throttling force generates a pitch moment causing the body 
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center of gravity to shift backward as shown in FIGURE 6 and vice 
versa when braking input is applied. Shifting the body center of gravity 
causes a weight transfer from an axle to the other axle. By defining the 
distance between the body center of gravity and the pitch pole is Hpc , 
pitch moment is defined by:
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 

 
 pcxp HaMM )(                                                                                                         (44) 
 
In case of braking, the two pneumatic actuators installed in the front axle have to produce the 
necessary forces to cancel out the unwanted pitch moments, whereas the forces of the two 
pneumatic actuators at the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 

 
 pcxp HaMM )(                                                                                                         (44) 
 
In case of braking, the two pneumatic actuators installed in the front axle have to produce the 
necessary forces to cancel out the unwanted pitch moments, whereas the forces of the two 
pneumatic actuators at the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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In case of braking, the two pneumatic actuators installed in the front 
axle have to produce the necessary forces to cancel out the unwanted 
pitch moments, whereas the forces of the two pneumatic actuators at 
the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as:
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner 
for throttle input can be defined as:
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
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3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 

 
 pcxp HaMM )(                                                                                                         (44) 
 
In case of braking, the two pneumatic actuators installed in the front axle have to produce the 
necessary forces to cancel out the unwanted pitch moments, whereas the forces of the two 
pneumatic actuators at the rear axle will act in the opposite. Pneumatic forces that cancel out 
pitch moment in each corner due to braking input are defined as: 

 

f

pcxp'
pfl

'
pfr L

H)a(M
FF   and 












f

pcxp'
prr

'
prl L

H)a(M
FF                        (45) 

Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
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For a linear system of equations y=Cx, if mxnC   has a full row rank, then a right inverse 

1C such as mxmICC 1 still exist. The right inverse can be computed using   11   TT CCCC .  
Thus, the inverse relationship of equation (42) can be expressed as ; 
 

 

























































































M
M
F

w)ll()ll(
l

w)ll()ll(
l

w)ll()ll(
l

w)ll()ll(
l

F
F
F
F

z

rfrf

f

rfrf

f

rfrf

r

rfrf

r

"
prr

"
prl

"
pfr

"
pfl

2
1

2
1

2

2
1

2
1

2

2
1

2
1

2

2
1

2
1

2

                                                (43) 

 
3.2 Pitch Moment Rejection Loop 

In the outer loop controller, APID control is applied for suppressing both body vertical 
displacement and body pitch angle. The inner loop controller of pitch moment rejection 
control is described as follows: during throttling and braking, a vehicle will produce a force, 
namely throttling force and braking force respectively at the body center of gravity. The 
throttling force generates a pitch moment causing the body center of gravity to shift backward 
as shown in FIGURE 6 and vice versa when braking input is applied. Shifting the body center 
of gravity causes a weight transfer from an axle to the other axle. By defining the distance 
between the body center of gravity and the pitch pole is pcH , pitch moment is defined by: 
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Whereas, pneumatic forces that cancel out pitch moment in each corner for throttle input can 
be defined as: 
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where,  

pflF = target force of pneumatic system at the front left corner produced by inner loop 
controller 

pfrF = target force of pneumatic system at the front right corner produced by inner loop 
controller 

prlF = target force of pneumatic system at the rear left corner produced by inner loop 
controller 

prrF = target force of pneumatic system at the rear right corner produced by inner loop 
controller 

 
The ideal target forces for each pneumatic actuator are defined as the target forces produced 
by the outer loop controller subtracted with the respective target forces produced by inner 
loop controller as following:  
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FIGURE 6: Free body diagram for pitch motion. 

3.3 Adaptive PID Control  

From many previous researches, it has been identified that PID controller is already proven 
effective in many applications but unable to continuously vary with the variation condition. 
Because of that, an adaptive PID controller is needed. The APID controller that is applied in 
the suspension system is shown in FIGURE 6 and can mathematically be described as the 
following equations ; 
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3.3 Adaptive PID Control  

From many previous researches, it has been identified that PID controller is already proven 
effective in many applications but unable to continuously vary with the variation condition. 
Because of that, an adaptive PID controller is needed. The APID controller that is applied in 
the suspension system is shown in FIGURE 6 and can mathematically be described as the 
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The constant values in the equations (51) to (58) are obtained from linearization of the 
controller gained with the value of longitudinal acceleration as discussed in Appendix. Before 
linearization is made, it is necessary to identify the PID controller parameters of all the input 
condition in simulation of sudden acceleration and sudden braking test.  
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The constant values in the equations (51) to (58) are obtained from 
linearization of the controller gained with the value of longitudinal 
acceleration as discussed in Appendix. Before linearization is made, it 
is necessary to identify the PID controller parameters of all the input 
condition in simulation of sudden acceleration and sudden braking 
test. 
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In these conditions, the simulations have been made with 1Mpa, 3Mpa 
and 6Mpa brake pressure in sudden braking test, while 0.2, 0.6 and full 
step throttle for the sudden acceleration test. The controller parameters 
obtained from the tests are described in Table 1.

Table 1: PID controller parameters

40 
 

 
In these conditions, the simulations have been made with 1Mpa, 3Mpa and 6Mpa brake 
pressure in sudden braking test, while 0.2, 0.6 and full step throttle for the sudden 
acceleration test. The controller parameters obtained from the tests are described in Table 1. 

 
Table 1: PID controller parameters 

Driver Input 

Controller Parameter 
Longitudinal 
Acceleration  

(G)
Body Displacement
(controller for zF )

Body Pitch  
(controller for M )

Kp Ki Kd Kp Ki Kd 
1Mpa brake 800 700 1600 600 300 1500 -1.36 
3Mpa brake 1000 1000 2000 1000 500 2000 -2.72 
6Mpa brake 2000 2000 3000 1852 7000 2251 -8.2 
0.2 step 
throttle 3000 100 500 2500 50 700 0.96 
0.6 step 
throttle 1000 900 750 2700 57 800 2.89 
full step 
throttle 5000 100 2500 30000 60 8000 4.8 

4.0 Validation Of 14 Dof Vehicle Model Using Instrumented Experimental Vehicle  
 
To verify the full vehicle ride and handling model that have been derived, experimental 
works are performed using an instrumented experimental vehicle. This section provides the 
verification of ride and handling model using visual technique by simply comparing the trend 
of simulation results with experimental data using the same input signals. Validation or 
verification is defined as the comparison of model’s performance with the real system. 
Therefore, the validation does not mean that the fitting of simulated data is exact as the 
measured data, but as gaining confidence that the vehicle handling simulation is giving 
insight into the behavior of the simulated vehicle reference. The tests data are also used to 
check whether the input parameters for the vehicle model are reasonable. In general, model 
validation can be defined as determining the acceptability of a model by using some 
statistical tests for deviance measured or subjectively using visual techniques reference. 

 
4.1 Vehicle Instrumentation 
 
The data acquisition system (DAS) is installed into the experimental vehicle to obtain the real 
vehicle reaction as to evaluate the vehicle’s performance in terms of longitudinal 
acceleration, body vertical acceleration and pitch rate. The DAS uses several types of 
transducers such as single axis accelerometer to measure the sprung mass and unsprung mass 
accelerations for each corner, tri-axial accelerometer to measure longitudinal, vertical and 
lateral accelerations at the body center of gravity, tri-axial gyroscopes for the pitch rate and 
wheel speed sensor to measure angular velocity of the tire. The multi-channel µ-MUSYCS 
system Integrated Measurement and Control (IMC) is used as the DAS system. Online 
FAMOS software as the real time data processing and display function is used to ease the 
data collection. The installation of the DAS and sensors to the experimental vehicle can be 
seen in FIGURE 7. 
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acceleration and pitch rate. The DAS uses several types of transducers 
such as single axis accelerometer to measure the sprung mass and 
unsprung mass accelerations for each corner, tri-axial accelerometer 
to measure longitudinal, vertical and lateral accelerations at the body 
center of gravity, tri-axial gyroscopes for the pitch rate and wheel 
speed sensor to measure angular velocity of the tire. The multi-channel 
µ-MUSYCS system Integrated Measurement and Control (IMC) is 
used as the DAS system. Online FAMOS software as the real time data 
processing and display function is used to ease the data collection. The 
installation of the DAS and sensors to the experimental vehicle can be 
seen in FIGURE 7.
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 a) Tri-axis accelerometer     b) Gyro sensors              c) Speed sensor 
 

                              
            d) DAS       e) Front wheel speed sensor       f) Rear wheel speed 
sensor  

 

      
                  g) Instrumentation inside the vehicle                            h) Experimental vehicle 

FIGURE 7: In-vehicle instrumentations 
 
4.2 Experimental Vehicle 

An instrumented experimental vehicle is developed to validate the full vehicle model. A 
Malaysian National car is used to perform sudden braking and sudden acceleration test, 
defined in (SAE J266, 1996). Note that the vehicle is 1300 cc and uses manual gear shift as 
the power terrain systems. The technical specifications of the vehicle are listed in Table 1. 

TABLE 1: Experimental vehicle Parameter 
Parameter Value 

Vehicle mass 920kg 
Wheel base 2380mm 
Wheel track 1340mm 

Spring rate: Front: 
Rear: 

30 N/mm 
30 N/mm 

Damper rate : Front: 
Rear: 

1000 N/msec ¹ 
1000 N/msec ¹ 

Roll center 100 
Center of gravity 550mm 

Wheel radius 285mm 

a) Tri-axis accelerometer          b) Gyro sensors	                 c) Speed sensor
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FIGURE 7: In-vehicle instrumentations

4.2	E xperimental Vehicle

An instrumented experimental vehicle is developed to validate the full 
vehicle model. A Malaysian National car is used to perform sudden 
braking and sudden acceleration test, defined in (SAE J266, 1996). Note 
that the vehicle is 1300 cc and uses manual gear shift as the power 
terrain systems. The technical specifications of the vehicle are listed in 
Table 1.
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TABLE 1: Experimental vehicle Parameter
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Spring rate: Front: 
Rear: 

30 N/mm 
30 N/mm 
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Rear: 
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4.3	V alidation Procedures 

The dynamic response characteristics of a vehicle model that include 
longitudinal acceleration, longitudinal slip in each tire and pitch rate 
can be validated using experimental test through several handling 
test procedures namely sudden braking test and sudden acceleration 
test. Sudden braking test is intended to study transient response of the 
vehicle under braking input. In this case, the tests were conducted by 
accelerating the vehicle to a nominal speed of 60kph and activating the 
instrumentation package. The driver then applies the brake pedal hard 
enough to hold the pedal firmly until the vehicle stopped completely 
as shown in FIGURE 8(a). On the other hand, sudden acceleration test 
is used to evaluate the characteristics of the vehicle during a sudden 
increase of speed. In this study, the vehicle accelerated to a nominal 
speed of 40kph and activated the instrument package. The driver then 
manually applied the throttle pedal full step as required to make the 
vehicle accelerated immediately as shown in FIGURE 8(b).
  
4.4	V alidation Results

FIGUREs 9 and 10 show a comparison of the results obtained 
using SIMULINK and experimental. In experimental works, all the 
experimental data are filtered to remove out any unintended data. It is 
necessary to note that the measured vehicle speed from the speed sensor 
is used as the input of simulation model. For the simulation model, tire 
parameters are obtained from Szostak et.al. (1988) and Singh et.al. (2002). 
The results of model verification for sudden braking test at 60 kph are 
shown in FIGURE 9. FIGURE 9(a) shows the vehicle speed applied for 
the test. It can be seen that the trends between simulation results and 
experimental data are almost similar with acceptable error. The small 
difference in magnitude between simulation and experimental results 
is due to the fact that, in an actual situation, it is indeed very hard for 
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the driver to maintain the vehicle in a perfect speed as compared to the 
result obtained in the simulation.  

In terms of both longitudinal acceleration and pitch rate response, it can 
be seen that there are quite good comparisons during the initial transient 
phase as well as during the following steady state phase as shown in 
FIGUREs 9(b) and (c) respectively. Longitudinal slip responses of the 
front tires also show satisfactory matches with only small deviation in 
the transition area between transient and steady state phases as shown 
in FIGURE 9(d) and (e). It can also be noted that the longitudinal slip 
responses to all tires in the experimental data are slightly higher than 
the longitudinal slip data obtained from the simulation responses 
particularly for the rear tires as seen in FIGUREs 9(f) and (g). This is 
due to the fact that it is difficult for the driver to maintain a constant 
speed during maneuvering. In simulation, it is also assumed that the 
vehicle is moving on a flat road during step steer maneuver. In fact, it is 
observed that the road profiles of test field consist of irregular surface. 
This can be another source of deviation on longitudinal slip response 
of the tires. 
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                       a) Vehicle speed     b) Longitudinal acceleration 

  
   c) Pitch rate       d) Longitudinal slip front right 

         
  

e) Longitudinal slip front left              f) Longitudinal slip rear left  
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FIGURE 9: Response of the Vehicle for sudden braking test at constant speed of 60 kph 
 
The results of Sudden Acceleration test at constant speed of 40kph indicate that measurement 
data and the simulation results agree with a relatively good accuracy as shown in FIGURE 
10. FIGURE 10(a) shows the vehicle speed which is used as the input for the simulation 
model. In terms of pitch rate and longitudinal acceleration, it can be seen clearly that the 
simulation and experimental result are very similar with minor difference in magnitude as 
shown in FIGURE 10(b) and (c). The minor difference in magnitude and small fluctuation 
occurred on the measured data is due to the body’s flexibility which was ignored in the 
simulation model. In terms of tire’s longitudinal slip, the trends of simulation results show 
close agreement for both experimental data and simulation are shown in FIGURE 10(d), (e), 
(f) and (g). Closely similar to the validation results obtained from sudden acceleration test, 
the longitudinal responses of all tires in experimental data are smaller than the longitudinal 
slip data obtained from the simulation. Again, this is due to the difficulty of the driver to 
maintain a constant speed during sudden acceleration test maneuver. Assumption in 
simulation model that the vehicle is moving on a flat road during the maneuver is also very 
difficult to realize in practice. In fact, road irregularities of the test field may cause the change 
in tire properties during the vehicle handling test. Assumption of neglecting steering inertia 
may possibility lower down the magnitude of tire longitudinal slip in simulation results 
compared with the measured data.  
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FIGURE 9: Response of the Vehicle for sudden braking 
test at constant speed of 60 kph

The results of Sudden Acceleration test at constant speed of 40kph 
indicate that measurement data and the simulation results agree with a 
relatively good accuracy as shown in FIGURE 10. FIGURE 10(a) shows 
the vehicle speed which is used as the input for the simulation model. 
In terms of pitch rate and longitudinal acceleration, it can be seen 
clearly that the simulation and experimental result are very similar 
with minor difference in magnitude as shown in FIGURE 10(b) and (c). 
The minor difference in magnitude and small fluctuation occurred on 
the measured data is due to the body’s flexibility which was ignored 
in the simulation model. In terms of tire’s longitudinal slip, the trends 
of simulation results show close agreement for both experimental data 
and simulation are shown in FIGURE 10(d), (e), (f) and (g). Closely 
similar to the validation results obtained from sudden acceleration test, 
the longitudinal responses of all tires in experimental data are smaller 
than the longitudinal slip data obtained from the simulation. Again, 
this is due to the difficulty of the driver to maintain a constant speed 
during sudden acceleration test maneuver. Assumption in simulation 
model that the vehicle is moving on a flat road during the maneuver 
is also very difficult to realize in practice. In fact, road irregularities of 
the test field may cause the change in tire properties during the vehicle 
handling test. Assumption of neglecting steering inertia may possibility 
lower down the magnitude of tire longitudinal slip in simulation results 
compared with the measured data.
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FIGURE 10: Response of the vehicle for sudden acceleration test at constant speed 40 kph 
 

5.0  Performance Evaluation Of Gspid Control 

The performance of GSPID controller is examined through simulation studies using 
SIMULINK toolbox of the MATLAB software package. For comparison purposes, the 
performance of the GSPID is compared with both the conventional PID control approach and 
passive system.  The performance of the controller is examined through vehicle translational 
motion namely body pitch angle, pitch rate, body acceleration and body displacement. 

 
 
 

5.1 Simulation Parameters 
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FIGURE 10: Response of the vehicle for sudden acceleration test at 
constant speed 40 kph

5.0	  Performance Evaluation Of Gspid Control

The performance of GSPID controller is examined through simulation 
studies using SIMULINK toolbox of the MATLAB software package. For 
comparison purposes, the performance of the GSPID is compared with 
both the conventional PID control approach and passive system.  The 
performance of the controller is examined through vehicle translational 
motion namely body pitch angle, pitch rate, body acceleration and 
body displacement.

5.1	 Simulation Parameters

The simulation study was performed for a period of 10 seconds using 
Heun solver with a fixed step size of 0.01 second. The controller 
parameters are obtained using trial and error technique. The numerical 
values of the 14-DOF full vehicle model parameters and Calspan tire 
model parameters as well as the controller parameters are shown in 
Table 2:
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The simulation study was performed for a period of 10 seconds using Heun solver with a 
fixed step size of 0.01 second. The controller parameters are obtained using trial and error 
technique. The numerical values of the 14-DOF full vehicle model parameters and Calspan 
tire model parameters as well as the controller parameters are shown in Table 2: 

TABLE 2: Tire parameter 
Parameter FWD radial 

Tire designation P185/70R13 
Tw 7.3 
Tp 24 
FZT 980 

1C  1.0 

2C  0.34 

3C  0.57 

4C  0.32 
Ao 1068 
A1 11.3 
A2 2442.73 
A3 0.31 
A4 -1877 
Ka 0.05 

CS/FZ 17.91 
µo 0.85 

5.2 Step Change Test Driver Input 

To predict the performance of APID controller, a step function driver input test is applied. 
The tests consist of sudden braking test and sudden acceleration test. In sudden braking test, 
the vehicle is accelerated and maintained to a nominal speed of 70 kph, then 6MPa brake is 
applied to hold the pressure firmly until the vehicle stopped completely. For the remainder of 
the simulation, the steering is maintained constantly at zero degree appropriately. In sudden 
acceleration test,  the same condition is applied to the vehicle, and then full step throttle input 
is applied to make the vehicle accelerate immediately. In order to fulfill the objective of 
designing the active suspension system, there are four parameters observed in the 
simulations. The four parameters are the vehicle body acceleration, body displacement, pitch 
rate and pitch angle. The solid lines are defined as the active suspension under APID 
controller, the dashed lines are describe as the active suspension under PID controller and the 
dotted lines are label of the passive system response.  
 
From FIGUREs 11(a) and (b), the pitch behavior for the APID controller indicates better 
performance reduced dive during the maneuver compared to conventional PID. It is shown in 
the vertical acceleration plot. The APID made the vehicle lose the momentum during the 
maneuvers and reduced the vehicle weight transfer to the front. FIGURE 11(c) illustrates 
clearly how the APID can effectively absorb the vehicle’s vibration in comparison to active 
suspension under PID controller and the passive suspension system. The oscillation of the 
body acceleration using the APID system is much reduced significantly, which guarantees 
better ride comfort and reduce of body vertical displacement as shown in FIGURE 11(d).  

5.2	 Step Change Test Driver Input

To predict the performance of APID controller, a step function driver 
input test is applied. The tests consist of sudden braking test and sudden 
acceleration test. In sudden braking test, the vehicle is accelerated and 
maintained to a nominal speed of 70 kph, then 6MPa brake is applied 
to hold the pressure firmly until the vehicle stopped completely. For 
the remainder of the simulation, the steering is maintained constantly 
at zero degree appropriately. In sudden acceleration test,  the same 
condition is applied to the vehicle, and then full step throttle input is 
applied to make the vehicle accelerate immediately. In order to fulfill 
the objective of designing the active suspension system, there are four 
parameters observed in the simulations. The four parameters are the 
vehicle body acceleration, body displacement, pitch rate and pitch 
angle. The solid lines are defined as the active suspension under APID 
controller, the dashed lines are describe as the active suspension under 
PID controller and the dotted lines are label of the passive system 
response. 

From FIGUREs 11(a) and (b), the pitch behavior for the APID controller 
indicates better performance reduced dive during the maneuver 
compared to conventional PID. It is shown in the vertical acceleration 
plot. The APID made the vehicle lose the momentum during the 
maneuvers and reduced the vehicle weight transfer to the front. FIGURE 
11(c) illustrates clearly how the APID can effectively absorb the vehicle’s 
vibration in comparison to active suspension under PID controller and 
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the passive suspension system. The oscillation of the body acceleration 
using the APID system is much reduced significantly, which guarantees 
better ride comfort and reduce of body vertical displacement as shown 
in FIGURE 11(d). 
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                     a) Pitch angle                           b) Pitch rate 

       
                     c) Body acceleration                                d) Body displacement 

FIGURE 11: Performance of GSPID at step function brake 6 MPa 
 
The results of the sudden acceleration test showed that the proposed controllers, APID are 
reasonably efficient methods in enhancing vehicle stability in term of reducing squat. In this 
case, the input of the vehicle is changed from braking to throttling input. FIGURE 12 show 
that performance of the APID controller has a good tracking performance with good transient 
response.  FIGURE 12 (a) shows the response of the vehicle from sudden acceleration test 
maneuver which is input for the simulation model. In terms of the pitch rate, the proposed 
controller gives the system a more stable output when it is compared to PID structures as 
shown in FIGURE 12 (b). The result of the body acceleration and body displacement are 
shown in FIGURE 12 (c) and FIGURE 12 (d) respectively. The FIGURE explains that the 
APID controller gives better performance in terms of settling time and reducing the 
magnitude as compared to the counterparts..  

   
a) Pitch angle                            b) Pitch rate 

 
 

FIGURE 11: Performance of GSPID at step function brake 6 MPa

The results of the sudden acceleration test showed that the proposed 
controllers, APID are reasonably efficient methods in enhancing vehicle 
stability in term of reducing squat. In this case, the input of the vehicle 
is changed from braking to throttling input. FIGURE 12 show that 
performance of the APID controller has a good tracking performance 
with good transient response.  FIGURE 12 (a) shows the response of the 
vehicle from sudden acceleration test maneuver which is input for the 
simulation model. In terms of the pitch rate, the proposed controller 
gives the system a more stable output when it is compared to PID 
structures as shown in FIGURE 12 (b). The result of the body acceleration 
and body displacement are shown in FIGURE 12 (c) and FIGURE 12 (d) 
respectively. The FIGURE explains that the APID controller gives better 
performance in terms of settling time and reducing the magnitude as 
compared to the counterparts..
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c) Body acceleration        d) Body displacement 

FIGURE 12: Performance of GSPID at step function full throttle 
 

5.3  Response Of The Controller For Unbounded Signal  

To verify the robustness of the controller, a similar test is conducted for unstable driver input 
out of predetermined range. The test used unstable brake pressure as the input of the sudden 
braking test and unstable throttle push as the input of the sudden acceleration test. FIGURE 
13 (a) shows the braking input which is used as the input for the sudden braking test. The 
result is clearly explained that the simulation under APID controller is yielded very 
effectively to enhance vehicle stability and ride quality in terms of reducing vehicle dive as 
shown in FIGURE 13 (b). The major difference in magnitude and small fluctuation occurred 
in the graph is due to the flexibility of the APID to adapt with the condition held on the 
system which shows in pitch rate plot in FIGURE 13 (c).  In terms of body acceleration as 
shown in FIGURE 13 (d), the trends of simulation results show the APID significantly 
improve with better performance as compared to the conventional PID. Due to the 
improvement of the body acceleration, the magnitude of the body displacement is reduced. 
FIGURE 13 (e) shows the evidence on the vehicle remains steady even when the unstable 
driver input is applied.   
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FIGURE 12: Performance of GSPID at step function full throttle

5.3	  Response Of The Controller For Unbounded Signal 

 To verify the robustness of the controller, a similar test is conducted 
for unstable driver input out of predetermined range. The test used 
unstable brake pressure as the input of the sudden braking test and 
unstable throttle push as the input of the sudden acceleration test. 
FIGURE 13 (a) shows the braking input which is used as the input 
for the sudden braking test. The result is clearly explained that the 
simulation under APID controller is yielded very effectively to enhance 
vehicle stability and ride quality in terms of reducing vehicle dive as 
shown in FIGURE 13 (b). The major difference in magnitude and small 
fluctuation occurred in the graph is due to the flexibility of the APID 
to adapt with the condition held on the system which shows in pitch 
rate plot in FIGURE 13 (c).  In terms of body acceleration as shown 
in FIGURE 13 (d), the trends of simulation results show the APID 
significantly improve with better performance as compared to the 
conventional PID. Due to the improvement of the body acceleration, the 
magnitude of the body displacement is reduced. FIGURE 13 (e) shows 
the evidence on the vehicle remains steady even when the unstable 
driver input is applied.  
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                                                               e) Body displacement  

FIGURE 13: Performance of GSPID at unbounded braking input 
 

The performance of APID controller is then observed using unstable throttle input. The 
simulation test needs the vehicle to accelerate in a constant speed of about 20kph, and then 
the inconstant throttle input is applied as shown in FIGURE 14(a). In this case, the reference 
position and pitch are remained at zero degree respectively. The responses of the vehicle are 
described in FIGUREs 14(b) to (e). FIGUREs 14(b) and (c) explain on the performance of 
APID in reducing the pitch angle and pitch rate which, as a result, is able to decrease the 
vehicle squat. In addition, the magnitude of body acceleration (FIGURE 14(d)) and the body 
displacement (FIGURE 14 (e)) of the vehicle are visibly reduced. Overall, it can be said that 
the proposed controller has a good performance, stable and has good transient response in 
tracking of the system and can adapt with the stated range and the value in between the stated 
range held on sudden braking test or sudden acceleration test. The comparison between the 
APID and the conventional PID controller presents that the proposed schemes are much more 
effective in improving the stability of the vehicle during sudden acceleration and braking 
condition. As a result, the controller is verified to be able to enhance better vehicle 
performance and riding quality as shown in the simulation responses.   

 

  
a) Throttle input                      b) Pitch angle 

    
c) Pitch rate         d) Body acceleration 

FIGURE 13: Performance of GSPID at unbounded braking input

The performance of APID controller is then observed using unstable 
throttle input. The simulation test needs the vehicle to accelerate in a 
constant speed of about 20kph, and then the inconstant throttle input is 
applied as shown in FIGURE 14(a). In this case, the reference position 
and pitch are remained at zero degree respectively. The responses of 
the vehicle are described in FIGUREs 14(b) to (e). FIGUREs 14(b) and 
(c) explain on the performance of APID in reducing the pitch angle 
and pitch rate which, as a result, is able to decrease the vehicle squat. 
In addition, the magnitude of body acceleration (FIGURE 14(d)) and 
the body displacement (FIGURE 14 (e)) of the vehicle are visibly 
reduced. Overall, it can be said that the proposed controller has a good 
performance, stable and has good transient response in tracking of the 
system and can adapt with the stated range and the value in between 
the stated range held on sudden braking test or sudden acceleration 
test. The comparison between the APID and the conventional PID 
controller presents that the proposed schemes are much more effective 
in improving the stability of the vehicle during sudden acceleration 
and braking condition. As a result, the controller is verified to be able 
to enhance better vehicle performance and riding quality as shown in 
the simulation responses.  
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FIGURE 13: Performance of GSPID at unbounded braking input 
 

The performance of APID controller is then observed using unstable throttle input. The 
simulation test needs the vehicle to accelerate in a constant speed of about 20kph, and then 
the inconstant throttle input is applied as shown in FIGURE 14(a). In this case, the reference 
position and pitch are remained at zero degree respectively. The responses of the vehicle are 
described in FIGUREs 14(b) to (e). FIGUREs 14(b) and (c) explain on the performance of 
APID in reducing the pitch angle and pitch rate which, as a result, is able to decrease the 
vehicle squat. In addition, the magnitude of body acceleration (FIGURE 14(d)) and the body 
displacement (FIGURE 14 (e)) of the vehicle are visibly reduced. Overall, it can be said that 
the proposed controller has a good performance, stable and has good transient response in 
tracking of the system and can adapt with the stated range and the value in between the stated 
range held on sudden braking test or sudden acceleration test. The comparison between the 
APID and the conventional PID controller presents that the proposed schemes are much more 
effective in improving the stability of the vehicle during sudden acceleration and braking 
condition. As a result, the controller is verified to be able to enhance better vehicle 
performance and riding quality as shown in the simulation responses.   

 

  
a) Throttle input                      b) Pitch angle 

    
c) Pitch rate         d) Body acceleration 

49 
 

 
                                                                 e) Body displacement 

FIGURE 14: Performance of GSPID at unbounded throttle input 
 
6.0 Conclusion 
 
An adaptive PID controller with pitch moment rejection for vehicle dive and squat to enhance 
vehicle stability and ride quality has been evaluated. The proposed controller which includes 
the proportional, integral and derivative gains are allowed to vary within predetermined range 
of the sudden braking and sudden acceleration tests. Simulation studies for an active 
suspension with validated full vehicle model are presented to demonstrate the effectiveness of 
using the APID controller. Two types of simulation tests namely sudden braking test and 
sudden acceleration test have been performed and data gathered from the tests were used as 
the benchmark of the proposed verification. Some of the vehicle’s behaviors observed in 
these works are pitch rate, pitch angle, body acceleration and body displacement responses. 
The performance characteristics of the controller are evaluated and compared with 
conventional PID.  The result shows that the use of the proposed APID control technique 
proved to be effective in controlling vehicle pitch and vibration and achieve better 
performance than the conventional PID controller.  
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6.0	 Conclusion

An adaptive PID controller with pitch moment rejection for vehicle 
dive and squat to enhance vehicle stability and ride quality has been 
evaluated. The proposed controller which includes the proportional, 
integral and derivative gains are allowed to vary within predetermined 
range of the sudden braking and sudden acceleration tests. Simulation 
studies for an active suspension with validated full vehicle model are 
presented to demonstrate the effectiveness of using the APID controller. 
Two types of simulation tests namely sudden braking test and sudden 
acceleration test have been performed and data gathered from the tests 
were used as the benchmark of the proposed verification. Some of the 
vehicle’s behaviors observed in these works are pitch rate, pitch angle, 
body acceleration and body displacement responses. The performance 
characteristics of the controller are evaluated and compared with 
conventional PID.  The result shows that the use of the proposed APID 
control technique proved to be effective in controlling vehicle pitch and 
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vibration and achieve better performance than the conventional PID 
controller. 
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