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ABSTRACT

In the present paper, the semi-analytical differential transformation method (DTM) is employed for 
vibration analysis of size-dependent nanobeams based on nonlocal Timoshenko beam theory (TBT). 
The governing motion equations of nanobeam with different edge conditions are derived by the 
Hamilton’s principle. DTM is applied to discretize the governing equations and boundary conditions, 
which are then solved to obtain the frequency parameters of nanobeam. In the numerical examples, 
the good agreements between the present results and existing literature verified the validity and 
accuracy of the present solution method. The detailed mathematical derivations are presented and 
numerical investigations are performed while the emphasis is placed on investigating the effect of 
small scale parameters, mode number, aspect ratios and edge conditions on the normalized natural 
frequencies of the nanobeams. It is explicitly shown that the vibration of a nanobeam is significantly 
influenced by these effects. 

KEYWORDS: Differential transformation method; Nonlocal Timoshenko beam theory; Vibration of 
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INTRODUCTION

In recent years, nanomechanical and nano-electro-mechanical systems at nanoscale receive 
special attention from researchers. Among all of them nanobeams attract more attention 
because of their potential usage and superior properties. Many recent experimental results 
have shown that as the size of the structures reduces to micro/nanoscale, the influences of 
atomic forces and small scale play a significant role in mechanical properties of these 
nanostructures (Chong et al., 2001). Thus, neglecting these effects in some cases may results 
in completely incorrect solutions and hence wrong designs. The classical continuum theories 
do not include any internal length scale. Consequently, these theories are expected to fail 
when the size of the structure becomes comparable with the internal length scale. Eringen 
nonlocal theory is one of the well-known continuum mechanics theories that includes small 
scale effects with good accuracy to model micro/nanoscale devises (Eringen & Edelen, 
1972). The nonlocal elasticity theory assumes that the stress at a point is function of the strain 
at all neighbor points of the body, hence, this theory could take into account the effects of 
small scales. 

In recent years, the studies of nanostructures using the nonlocal elasticity theory have been an 
area of active research. Based on this theory, Reddy (2007) derived the equation of motion of 
Euler–Bernoulli, Timoshenko, Reddy and Levinson beam theories and presented analytical 
and numerical solutions for deflections, buckling loads and natural frequencies of 
nanobeams. Moreover, bending, buckling and free vibration of nanobeams based on different 
beam theories investigated by Aydogdu (2009). Recently, Thai (2012) studied bending, 
buckling and vibration of nanobeams employing analytical methods. Most recently, in a
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similar work, free vibration of single walled carbon nanotubes with various edge conditions is 
examined by Ansari and Sahmani (2012).

The governing motion equations are often solved by analytical method which usually only 
utilize for simply supported edge conditions (Reddy, 2007; Aydogdu, 2009; Thai, 2012), or 
by finite element methods or generalized differential quadrature method (Ansari & Sahmani, 
2012) and other solution methods which need high CPU time to solve. But in the present 
work we employ a novel semi-analytical method called differential transformation method
which was first introduced by Zhou (1986) for solving linear and nonlinear initial value 
problems in electric circuits. The main advantage of this method is that it can be applied 
directly to partial differential equations without requiring linearization, discretization, or 
perturbation. It is a semi-analytical-numerical technique that formulizes Taylor series in a 
very different manner. By using this method, the governing differential equations can be 
reduced to recurrence relations and the boundary conditions may be transformed into a set of 
algebraic equations. It is different from the high-order Taylor series method which requires 
symbolic computation of the necessary derivatives of the data functions. Another important 
advantage is that this method reduces the size of computational work while the Taylor series 
method is computationally time-consuming especially for high order equations.

As seen, to the author’s best knowledge there is no work on vibration analysis of nanobeams 
using TBT with differential transformation method for various edge conditions. Therefore, 
Timoshenko beam theory is employed based on Eringen’s nonlocal elasticity Theory to 
consider the size-effect in free vibration analysis of nanobeams corresponding to four 
commonly used edge conditions including Simply supported-Simply supported (S-S),
Clamped-Simply supported (C-S), Clamped-Clamped (C-C) and Clamped-Free (C-F). Then, 
DTM is utilized to detemine the natural frequencies of nanobeams. To illustrate the accuracy 
of present method, the obtained results are compared with those published works. Hence, The 
influences of the nonlocal parameter, aspect ratio and different edge condition on the free 
vibration characteristics of the nanobeams are discussed in details.

BASIC FORMULATIONS 

2.1 Nonlocal Elasticity Theory

The constitutive equation of classical elasticity is an algebraic relationship between the stress 
and strain tensors while that of Eringen’s nonlocal elasticity involves spatial integrals which 
represent weighted averages of the contributions of strain tensors of all points in the body to 
the stress tensor at the given point (Eringen, 2002). Though it is difficult mathematically to 
obtain the solution of nonlocal elasticity problems due to the spatial integrals in constitutive 
equations, these integropartial constitutive differential equations can be converted to 
equivalent differential constitutive equations under certain conditions. The theory of nonlocal 
elasticity, developed by Eringen & Edelen (1972) states that the nonlocal stress-tensor 
components σij at any point x in a body can be expressed as:

( ) ( , ) ( ) ( )ij ijx x x t x d x  


     (1)
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where tij(x') are the components of the classical local stress tensor at point x, which are related 
to the components of the linear strain tensor εkl by the conventional constitutive relations for a 
Hookean material, i.e:

klijklij Ct  (2)

Equation (1) states that the nonlocal stress at point x is the weighted average of the local 
stress of all points in the neighborhood of x, the size of which is related to the nonlocal kernel
α(|x'-x|,τ). Here |x'-x| is the Euclidean distance and τ is a constant given by:

l

ae0 (3)

which represents the ratio between a characteristic internal length, a (such as lattice 
parameter, C–C bond length and granular distance) and a characteristic external one, l (e.g. 
crack length, wavelength) trough an adjusting constant, e0, dependent on each material. The 
magnitude of e0 is determined experimentally or approximated by matching the dispersion 
curves of plane waves with those of atomic lattice dynamics. For a class of physically 
admissible kernel α(|x'-x|,τ) it is possible to represent the integral constitutive relations given 
by Equation (1) in an equivalent differential form as (Eringen & Edelen, 1972):

klkl tae  ))(1( 2
0 (4)

where 2 is the Laplacian operator. Thus, the scale length e0a takes into account the size 
effect on the response of nanostructures. For an elastic material in the one dimensional case, 
the nonlocal constitutive relations may be simplified as (Eringen, 1983):

2

2
xx

xx xxE
x

  
 


(5)

2

2
xz

xz xzG
x

  
 


(6)

where  and  are the nonlocal stress and strain respectively, µ= (e0a)2 is nonlocal 
parameter, E is the elasticity modulus, G=E/2(1+ν) is the shear modulus and  is the 
Poisson’s ratio.

2.2 Timoshenko beam theory (TBT)

Timoshenko beam theory considers the effects of shear deformation and rotational inertia of 
the beam. Here x-coordinate is taken along the length of the beam, z-coordinate along the 
thickness (the height) of the beam, and the y-coordinate is taken along the width of the beam. 
According to TBT, the components of displacement vector for an arbitrary point can be 
defined as: 

1( , , ) ( , ) ( , )u x z t u x t z x t  (7a)

2 ( , , ) 0u x z t  (7b)
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3 ( , , ) ( , )u x z t w x t (7c)
  
where u, w and φ are the axial, transverse and angular displacement along the midplane of the 
beam respectively. The nonzero strains of the TBT are obtained as:

0
xx

0 ( , ) ( , )
, ,x x xx xx

u x t x t
z

x x

     
 

 
 (8a)

( , )
( , )xz

w x t
x t

x
 

 


(8b)

The governing equations of motion and the edge conditions based on TBT can be derived by 
Hamilton’s principles as follows:

0
( ) 0

t
T U V dt    (9)

where U is the strain energy, T is the kinetic energy and V is work done by external forces. 
The first variation of the strain energy can be calculated as:

( )ij ij xx xx xz xzv v
U dV dV          (10)

Substituting Equation (8) into Equation (10) yields:

0

0
( ( ) ( ) ( ))

L

xx x x xzU N M Q dx      (11)

where N, M and Q are the axial force, bending moment and shear force, respectively which 
are defined as

, ,xx xx s xzA A A
N dA M zdA Q K dA       (12)

Here Ks denotes the shear correction factor. Moreover the first variation of kinetic energy and 
the work done by external forces for TBT can be calculated as:

0
( ) ( ) ( )

L u u w w
T A I A dx

t t t t t t

                       (13)

 
0

L
V f u q w dx    (14)

Substituting Equations (12), (13) and (14) into Equation (9) and setting the coefficients of δu, 
δw and δφ to zero, leads to the following motion equations:

2

2

N u
f A

x t
 

 
 

(15)
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2

2

Q w
q A

x t
 

 
 

(16)

2

2

M
Q I

x t

 
 

 
(17)

while the corresponding boundry conditions are given as:

0N  or 0u     at 0x  and x L (18)

0Q  or  0w     at 0x  and x L (19)

0M  or  0     at 0x  and x L (20)

Further, nonlocal axial normal force, bending moment and shear force can be obtained as:

2

2

N u
N EA

x x
  

 
 

(21)

2

2

M
M EI

x x

  
 

 
(22)

2

2
( )s

Q w
Q GAK

x x
  

  
 

(23)

Thus the nonlocal governing equations for transverse vibrations of Timoshenko nanobeam 
can be derived in terms of the displacements by substituting Equations (22) and (23), into 
Equations (16) and (17) as follows:

2 2 2

2

4

2 22 2
( ) ( )s

w q w
K GA A q A

x x

w

t x tx

    



  




 
  

 
(24)

2

2 2

2 4

2 2
( )s

w
EI K GA I I

x x t x t

       
   

    
(25)

DIFFERENTIAL TRANSFORMATION METHOD

Differential transformation method is one of the novel techniques to solve the differential 
equations with small calculation errors and ability to solve nonlinear equations with edge 
conditions value problems. Abdel-Halim Hassan (2002) applied the DTM on eigenvalues and 
normalized eigenfunctions. Also Wang (2013) presented the axial vibration analysis of 
stepped bars utilizing DTM. DTM is proved to be a good computational tool for various 
engineering problems. Using DTM, the ordinary and partial differential equations can be 
transformed into algebraic equations, from which a closed-form series solution can be 
obtained easily. In this method, certain transformation rules are applied to both the governing 
differential equations of motion and the boundary conditions of the system in order to 
transform them into a set of algebraic equations as presented in Tables 1 and 2. The solution 
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of these algebraic equations gives the desired results of the problem. The basic definitions 
and the application procedure of this method can be introduced as follows. The 
transformation equation of function f(x) can be defined as (Chen and Ju, 2004):

 
0

1 ( )
( )

!

k

x xk

d f x
F k

k dx  (26)

where f(x) the original is function and F[k] is the transformed function. The inverse 
transformation is defined as

   0
0

( )  k

k

f x x x F k




  (27)

Combining Equations (26) and (27) one obtains

   
0

0

0

( )
( )

!

kk

x xk
k

d f xx x
f x

k dx







  (28)

In actual application, the function f(x) is expressed by a finite series and Equation (28) can be 
written as follows

   
0

0

0

( )
( )

!

kk

x x

N

k
k

d f xx x
f x

k dx 



  (29)

which implies that the following terms in relation (29) is negligible

   
0

0

1

( )
( )

!

kk

x xk
k N

d f xx x
f x

k dx




 


  (30)

Table 1. Some of transformation rules for the one-dimensional DTM (Chen & Ju, 2004)
Original function Transformed function

    ( )f x g x h x      ( )F K G K H K 

    ( )f x g x   ( )F K G K

    ( )f x g x h x    
0

( )
K

l

F K G K l H l


 

  ( )n

n

d g x
f x

dx
    !

( )
!

k n
F K G K n

k


 

  nf x x     1

0

k n
F K K n

k n



    

Table 2. Transformed boundary conditions (B.C.) based on DTM (Chen and Ju, 2004)
X=0 X=L
Original B.C. Transformed B.C. Original B.C. Transformed B.C.

f(0) 0 F[0] 0 f ( ) 0L 
0

[ ] 0
k

F k





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df (0)
0

dx
 F[1] 0 df ( )

0
dx

L


0

  [ ] 0
k

k F k





2

2

(0)
0

dx

d f
 [2] 0F 

2

2

( )
0

dx

d f L
  

0

1   [ ] 0
k

k k F k




 
3

3

(0)
0

dx

d f
 [3] 0F 

3

3

( )
0

dx

d f L
   

0

1 2 [ ] 0
k

k k k F k




  

Using the transformation rules described in Table 1 and Equations (24) and (25) for TBT, the 
governing equation for nanobeam in DTM form can be expressed as:

2 2( )( 1)( 2) [ 2] ( 1) [ 1] [ ] 0s sK GA A k k W k K GA k k A W k             (31)

2 2( )( 1)( 2) [ 2] ( 1) [ 1] ( ) [ ] 0s sEI I k k k K GA k W k I K GA k               (32)

where W[k], ϕ[k] are the transformed functions of w and φ respectively. Hence, edge
conditions using the Table 2 and Equations (18) to (20) for TBT can be obtained as:

 Simply supported–Simply supported:

   0 0 ,  01W  

0 0

[ ] 0 , [ ] 0
k k

W k k k
 

 

   (33a)

 Clamped–Clamped:

   W 0 0 ,  00 

0 0

[ ] 0 , [ ] 0
k k

W k k
 

 

   (33b)

 Clamped–Simply supported:

   W 0 0 ,  00 

0 0

[ ] 0 , [ ] 0
k k

W k k k
 

 

   (33c)

 Clamped-Free:

   W 0 0 ,  00 

0 0

[ ] 0 , ( [ ] [ ]) 0
k k

k k k k W k 
 

 

    (33d)

Finally, by using Equations (31) and (32) for TBT with the transformed boundary conditions 
one arrives at the following eigenvalue problem

 11 12

21 22

( ) ( )
0

( ) ( )

A A
C

A A

 
 

 
 

 
(34)
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where [C] corresponds to the missing edge condition at x = 0. For the non-trivial solutions of 
Equation (34), it is necessary that the determinant of the coefficient matrix is equal to zero

11 12

21 22

( ) ( )
0

( ) ( )

A A

A A

 
 

 (35)

Solution of Equation (35) is simply a polynomial root finding problem. Many techniques 
such as Newton’s method, Laguerre’s method, etc. can be used to find the roots of this 
frequency equation. Also the non-dimensional natural frequencies are obtained based on the 
following relation:

2ˆ ρA / EIL  (36)

NUMERICAL RESULTS AND DISCUSSIONS

In this section, accuracy and efficiency of the presented method and closed form solution for 
natural frequency are investigated through examples. For this purpose, nanobeam with the 
following properties are used in computing the numerical values (Thai, 2012):

3 61, /12, 30 *10 ,10 , 0.3, 5 / 6sI bhm EL Kn        (36)

The convergence study for natural frequency of nanobeams with various edge conditions is 
presnted in Table 3. It is seen that the first frequency for TBT, generally, converges at 20th

iteration. Therefore, number of iteration is selected as k = 20 for results reported herein for 
the first natural frequency. Moreover, Figure 1 depicts the convergence rate for fundamental 
frequencies of Timoshenko nanobeam with various edge conditions.

Table 3. Convergence of fundamental frequencies for different edge conditions (L/h = 10, µ = 0)

k
Edge Condition

S-S C-C C-S C-F
8 9.3283 - - 3.5708
9 9.5190 - 13.0008 3.5761

10 9.7506 - 15.2915 3.5107
11 9.7272 21.9500 14.9865 3.5210
12 9.7047 21.0527 14.9054 3.5212
13 9.7062 20.7025 14.7938 3.5211
14 9.7076 21.0254 14.8379 3.5211
15 9.7075 20.9817 14.8371 3.5211
16 9.7074 20.9730 14.8365 3.5211
17 9.7074 20.9704 14.8359 3.5211
18 9.7074 20.9725 14.8361 3.5211
19 9.7074 20.9723 14.8361 3.5211
20 9.7074 20.9723 14.8361 3.5211
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Figure 1. Convergence study of fundamental frequencies of Timoshenko nanobeam with various edge
conditions (L/h = 10 , µ = 0)

In Table 4, natural frequency of nanobeam based on DTM are compared with those reported 
by Thai (2012). As can be seen in Table 4,  the good agreement and a close correlation 
among the results validate the proposed method of solution.

Table 4. Comparison of non-dimensional fundamental frequencies for S-S nanobeams

L/h 2
0( )e a  Thai (2012) Present (DTM)

5

0 9.2740 9.27403971
1 8.8477 8.84769556
2 8.4752 8.47521568
3 8.1461 8.14613652
4 7.8526 7.85263561

10

0 9.7075 9.70747723
1 9.2612 9.26120719
2 8.8713 8.87131884
3 8.5269 8.52685963
4 8.2196 8.21964147

20

0 9.8281 9.82812715
1 9.3763 9.37631061
2 8.9816 8.98157652
3 8.6328 8.63283617
4 8.3218 8.32179974

100

0 9.8679 9.86793274
1 9.4143 9.41428627
2 9.0180 9.01795343
3 8.6678 8.66780063
4 8.3555 8.35550445
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Figure 2. Non-dimensional natural frequencies of S-S nanobeams (L/h = 10)

Figure 3. Non-dimensional fundamental frequencies of S-S nanobeams (L/h = 50)

The natural frequencies of a nanobeam with various edge conditions based on TBT is
presented in Tables 5 and 6 for different values of aspect ratios and nonlocal parameters µ =
(e0a)2. The nonlocal parameters are taken as 0, 1, 2, 3, and 4 nm2. It should be noted that µ =
0 corresponds to the local beam theory. It is found that the nonlocal parameter has a marked 
effect on the natural frequency. The effect of nonlocal parameter on non-dimensional 
frequencies of simply supported nano beams are shown in Figures  2 and 3 for two values of 
aspect ratios (L/h=10, 50). While Figures 4 and 5 depics the effect of nonlocal parameter on 
non-dimensional frequencies of nanobeams with various edge conditions for two values of 
aspect ratios (L/h=10, 50). It is seen that an increase in the nonlocal parameter leads to 
decrease of natural frequency. The reason is that the presence of the nonlocal effect tends to 
decrease the stiffness of the nanostructures and hence decreases the values of frequencies.
Further, it can be concluded that with the increase the aspect ratio, the natural frequency 
increase. 
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Table 5. Non-dimensional natural frequencies of S-S nanobeams
L/h 2

0( )e a 
1̂ 2̂ 3̂

10

0 9.7074 37.0962 78.1547
1 9.2612 31.4105 56.8753
2 8.8713 27.7303 46.9034
3 8.5268 25.0996 40.8254
4 8.2196 23.0989 36.6272

20

0 9.8281 38.8299 85.6619
1 9.3763 32.8786 62.3385
2 8.9815 29.0263 51.4087
3 8.6328 26.2727 44.7469
4 8.3218 24.1785 40.1454

50

0 9.8629 39.3719 88.2907
1 9.4095 33.3375 64.2516
2 9.0133 29.4315 52.9864
3 8.6634 26.6395 46.1201
4 8.3512 24.5160 41.3774

100

0 9.8679 39.3719 88.2907
1 9.4142 33.3375 64.2516
2 9.0179 29.4315 52.9864
3 8.6678 26.6395 46.1201
4 8.3555 24.5160 41.3774

Table 6. Non-dimensional fundamental frequencies of nanobeams with different edge conditions

L/h 2
0( )e a 

Edge Condition

C-C C-S C-F

10

0 20.9723 14.8361 3.5211
1 19.8080 14.0555 3.5357
2 18.8121 13.3841 3.5507
3 17.9486 12.7989 3.5660
4 17.1910 12.2831 3.5818

20

0 21.9953 15.2657 3.5173
1 20.7582 14.4569 3.5324
2 19.7037 13.7621 3.5478
3 18.7916 13.1573 3.5637
4 17.9931 12.6247 3.5800

50

0 22.3114 15.3935 3.5162
1 21.0516 14.5761 3.5314
2 19.9789 13.8744 3.5470
3 19.0520 13.2637 3.5630
4 18.2409 12.7262 3.5795

100

0 22.3578 15.4120 3.5160
1 21.0946 14.5934 3.5313
2 20.0193 13.8907 3.5469
3 19.0901 13.2792 3.5629
4 18.2772 12.7409 3.5794
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Figure 4. Non-dimensional fundamental frequencies of different edge conditions (L/h = 10)

Figure 5. Non-dimensional fundamental frequencies of different edge conditions (L/h = 50)

CONCLUSIONS

The influence of nonlocal parameter effect and aspect ratio on free vibration of nanobeams 
with various edge condition is studied based on the Timoshenko beam theory. The equation 
of motion is obtained and differential transformation method is utilized in obtaining natural 
frequencies. It is observed that inclusion of the nonlocal effect decreases the natural 
frequencies of nanobeams especially at high values of nonlocal parameters while increasing 
the aspect ratio leads to an increase in natural frequencies. Presented numerical results can 
serve as benchmarks for the application and the design of nanoelectronic and nano-drive 
devices, nano-oscillators, and nanosensors, in which nanobeams act as basic elements.
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