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ABSTRACT

Image registration covers the set of techniques used in matching images 
of the same scene. A subset of the image registration problem, identifying 
the parameters in a similarity transformation, has emerged as useful in a 
recently defined area of machine design: designing mechanisms for rigid-
body shape-change. First, this brief paper shows a potential use for image 
registration techniques outside the field of machine vision. Second, it 
presents a closed-form solution for the similarity transformation parameters 
when the point sets to be matched are restricted to two-dimensional space 
as is needed in the aforementioned design problem.

KEYWORDS: Image registration, Similarity transformation, Closed-
form solution, Planar  

1.0 INTRODUCTION

As identified in Zitová and Flusser (2003), a critical step in image registration 
is “transform model estimation.”  In this step, one attempts to identify the 
mapping functions that will best align points on a sensed image with the 
corrseponding points on a reference image.  In some cases, this mapping 
function is restricted to be a similarity transformation,
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where Ui=(Uxi,Uyi ) are the points in the reference image and Vi=(Vxi,Vyi )  are 
the points in the transformed image.

In the design of rigid-body shape-changing mechanisms, a designer is 
presented with two (or more) target profiles. A target profile is a piecewise 
linear representation of a desired shape for a feature in a mechanism.  To 
complete the design of the mechanism, we seek an “average” representation of 
these profiles. Three such profiles are shown in Figure 1a. Denoting the points 
on the “reference profile” as Ui and those on one of the other two profiles 
(the dash-dot profile, for example) as vi, we seek the values of A and d that 
solve Eqs. (1) and (2) under the restriction c = 1.  This restriction is necessary 
due to the consideration of these points as representing rigid bodies.  Figure 
1b shows both of the target profiles aligned with the reference profile in this 
way.  Continuing with the design of a rigid-body shape-changing mechanism, 
a “mean profile” is generated from the geometric center of each Ui and the 
shifted vi, as shown in Figure 1c.  Using additional similarity transformations, 
the mean profile is now shifted to the locations that solve Eqs. (1) and (2) (again 
with c = 1) relative to each of the target profiles, as shown in Figure 1d.  Thus, 
similarity transformations are needed both to align all of the target profiles in 
order to create a mean segment and to move this mean segment back to the  
locations nearest the original target profiles. 
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FIGURE 1 
 (a) Three target profiles, with one deemed the reference profile. (b) Two profiles are 
transformed to the reference by a similarity transformation (with c = 1). (c) The mean 
profile. (d) The mean profile transformed back to the original profile locations. 
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= 1). (c) The mean profile. (d) The mean profile transformed back to the original 
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If the design goal were to find a single body to approximate the three target profiles, we would 
proceed to determine the dimensions of a mechanism that could guide the body (the mean segment) 
into the three positions shown in Figure 1d.  Should this solution not reproduce the orginal profiles 
with adequate accuracy, though, the process described above can be performed on individual 
portions of the target profiles. Figure 2a shows an example  in which the three target profiles are 
considered  to be composed of four segments.  Each segment now does a better job of 
approximating a shorter  section of the original target profile, and combining these segments into a 
single chain connected by revolute joints produces a more accurate matching of the original target 
profiles.   Figure 2b shows the complete mechanism that can be used to move the chain between the 
three profiles.  Note that increasing the number of segments increases the complexity (the number 
of links) of the mechanism that guides the segments between the three profiles. The details of this 
process are found in Murray et al. (Murray, 2008) and Persinger et al. (Persinger, 2009). 
 
The solution to Eqs. (1) and (2) has been thoroughly addressed in the literature.  Notable among this 
work is that of Horn (Horn, 1987), Horn et al. (Horn, 1988) and Arun et al. (Arun, 1987) who 
address the problem for three-dimensional point sets.  Umeyama (Umeyama, 1991) noted and 
corrected the problem of an A resulting in a reflection (instead of a rotation) for what he refers to as 
“corrupted data.”  Both Umeyama's approach and that of Wen et al. (Wen, 2006) work on sets 
containing points with an arbitrary number of dimensions. Central to the solutions in these papers is 
the use of the singular value decomposition (SVD).  Rapid and robust numerical techniques for 
determining the SVD are well established in the literature, for example, (Forsythe, 1977) and 
(Golub, 1983).  Even more recently, spanning graphs have been proposed due to the efficiency of 
the associated numerical method (Sabuncu, 2008). 
 
When Ui and vi are points confined to a plane, though, Eqs. (1) and (2) are shown in this technical 
brief to yield a closed-form solution.  The details of this solution are presented in the next section.  
Also of note, the correct values of A, d and c are generated even in the presence of “corrupted data.”  
Finally, the example from Umeyama (Umeyama, 1991) is used to verify this methodology. 
 
 
 
 
 

(a) Segmentation  (b) Mechanization  

FIGURE 2 
(a) Rigid bodies connected with revolute joints form a chain to closely approximate the 
profiles. (b) A mechanism design to move the chain of rigid bodies between the three 
profiles. 
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(a) Rigid bodies connected with revolute joints form a chain to closely 

approximate the profiles. (b) A mechanism design to move the chain of rigid 
bodies between the three 

If the design goal were to find a single body to approximate the three target 
profiles, we would proceed to determine the dimensions of a mechanism 
that could guide the body (the mean segment) into the three positions shown 
in Figure 1d.  Should this solution not reproduce the orginal profiles with 
adequate accuracy, though, the process described above can be performed 
on individual portions of the target profiles. Figure 2a shows an example  
in which the three target profiles are considered  to be composed of four 
segments.  Each segment now does a better job of approximating a shorter  
section of the original target profile, and combining these segments into a 
single chain connected by revolute joints produces a more accurate matching 
of the original target profiles.   Figure 2b shows the complete mechanism that 
can be used to move the chain between the three profiles.  Note that increasing 
the number of segments increases the complexity (the number of links) of the 
mechanism that guides the segments between the three profiles. The details of 
this process are found in Murray et.al. (2008) and Persinger et.al. ( 2009).

The solution to Equations. (1) and (2) has been thoroughly addressed in the 
literature.  Notable among this work is that of Horn (1987), Horn et.al. (1988) 
and Arun et.al. (1987) who address the problem for three-dimensional point 
sets.  Umeyama (1991) noted and corrected the problem of an A resulting in a 
reflection (instead of a rotation) for what he refers to as “corrupted data.”  Both 
Umeyama's approach and that of Wen et.al. (2006) work on sets containing 
points with an arbitrary number of dimensions. Central to the solutions in 
these papers is the use of the singular value decomposition (SVD).  Rapid and 
robust numerical techniques for determining the SVD are well established in 
the literature, for example, (Forsythe, 1977) and (Golub, 1983).  Even more 
recently, spanning graphs have been proposed due to the efficiency of the 
associated numerical method (Sabuncu, 2008).

When Ui and vi are points confined to a plane, though, Equations. (1) and (2) 
are shown in this technical brief to yield a closed-form solution.  The details of 
this solution are presented in the next section.  Also of note, the correct values 
of A, d and c are generated even in the presence of “corrupted data.”  Finally, 
the example from Umeyama (1991) is used to verify this methodology.
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2.0 THE CLOSED-FORM SIMILARITY TRANSFORMATION 
SOLUTION

We seek the values of c, θ in the rotation matrix
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By expanding Equation (17) and solving for θ,
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and ATAN2 is a four-quadrant inverse tangent function.  This determines the 
proper value of θ, so via Equation (3), A is now known.  Since A is defined as 
a rotation matrix, it cannot result in a reflection in the presence of “corrupted 
data,” a possibility when an SVD is used as noted and corrected for by 
Umeyama (Umeyama, 1991).
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Substituting c and A into Eq. (11) produces the value of d, and the similarity transformation is now 
known. 
 
 
3.0 EXAMPLE 

 
Figures 3a and 3b show the example presented in Umeyama (Umeyama, 1991) with data that is 
considered corrupted as the methods established prior to Umeyama yielded a reflection rather than a 
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Using Eqs. (9) and (10), 
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FIGURE 3
 (a) The points vi to undergo the similarity transformation. (b) The reference 

points Ui.

Using Equation (18), the angle θ=-33.6901°, and the corresponding rotation 
matrix is
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From Equation (23), the scaling factor is c = 0.7211. Finally, Equation (11) is 
used to find
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These values match those reported by Umeyama (1991). The result of using 
this similarity transformation to align vi with Ui is shown in Figure 4.

Note that for the rigid-body shape-changing calculation, Eq. (23) is not used 
and c = 1. In this case, Equation (11) yields
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The result of using this similarity transformation to align the vi with the Ui is 
shown in Figure 4.
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4.0 CONCLUSION 

 
When designing a rigid-body shape-changing mechanism, a problem familiar to the image 
registration community arises - obtaining the parameters in a similarity transformation that 
minimizes the sum of the squares of the distances between points on a reference image and the 
corresponding points in a sensed image. This problem has been thoroughly addressed for point sets 
in an arbitrary number of dimensions and for corrupted data. 
 
In the design of planar shape-changing mechanisms, the point sets are confined to two dimensions. 
Restricting the problem in this way, a closed-form solution to the similarity transformation problem 
was developed. Even though the scaling parameter can be determined as part of this derivation, the 
rigid-body criterion requires that we consider the problem as having no scaling factor (c = 1). 
Additionally, this design problem uses these similarity transformations a large number of times, in 
both aligning data sets to create an average version of these sets, and then in aligning this average 
set with the original data. As the original data set may be parsed in multiple ways, typical problems 
require thousands of such transformations. 
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(a) The scaled, rotated and translated vi that align with the Ui for the optimal c, A, and d. (b) 
The scaled, rotated and translated vi that align with the Ui for the optimal . 
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FIGURE 4
(a) The scaled, rotated and translated vi that align with the Ui for the optimal c, 
A, and d. (b) The scaled, rotated and translated vi that align with the Ui for the 

optimal c=1.

4.0 CONCLUSION

When designing a rigid-body shape-changing mechanism, a problem familiar 
to the image registration community arises - obtaining the parameters in 
a similarity transformation that minimizes the sum of the squares of the 
distances between points on a reference image and the corresponding points 
in a sensed image. This problem has been thoroughly addressed for point sets 
in an arbitrary number of dimensions and for corrupted data.
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In the design of planar shape-changing mechanisms, the point sets are confined 
to two dimensions. Restricting the problem in this way, a closed-form solution 
to the similarity transformation problem was developed. Even though the 
scaling parameter can be determined as part of this derivation, the rigid-body 
criterion requires that we consider the problem as having no scaling factor (c 
= 1). Additionally, this design problem uses these similarity transformations a 
large number of times, in both aligning data sets to create an average version 
of these sets, and then in aligning this average set with the original data. As 
the original data set may be parsed in multiple ways, typical problems require 
thousands of such transformations.
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