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ABSTRACT

The buckling analysis of a solid circular functionally graded piezoelectric 
plate subjected to the uniform radial compressive edge loading and an out 
of plane periodic electric field is presented. The material properties of the 
FGPM plate are assumed to vary continuously through the thickness of 
the plate according to a power law distribution of the volume fraction of 
the constituent materials. The general mechanical nonlinear equilibrium 
and stability equations are derived using the variational formulations 
to obtain the governing equations of the smart FG plate and dynamic 
instability regions are obtained employing the Bolotin’s method. Several 
important aspects such as applied electric field, mechanical loading and 
different plate thickness ratios as well as the FG volume fraction exponent 
which have impacts on critical buckling load and free vibration frequency 
rate of piezoelectric circular plate are investigated and discussed in detail. 
Numerical results are tabulated in several tables and figures. It is revealed 
that the piezoelectricity affects the unstable region slightly whilst the 
functionally graded composite material plays a significant role in changing 
the unstable regions and the buckling loads of the smart plate.

KEYWORDS: Solid circular plate; Buckling analysis; Piezoelectric 
functionally graded plate

1.0 INTRODUCTION

Smart piezoelectric sensors and actuators have been widely used 
in micro-electro-mechanical systems (MEMS). Typical piezoelectric 
bending actuators involve multilayer stacks and make use of the 
flexural deformation mode to produce larger deflections. However, the 
chief disadvantage of conventional layered piezoelectric actuators is 
that the bonding agent may crack at low temperature and creep or peel 
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off at high temperature (Zhu & Meng, 1995). Another disadvantage is 
that they suffer stress concentration near the interlayer surfaces due 
to the abrupt changes in both their material composition and thermo-
electro-elastic properties, which can cause severe deterioration in 
both the interlayer bonding strength and the response performance 
(Lee, 2005). These drawbacks reduce the electrical field induced 
displacement characteristics, lifetime and reliability of piezoelectric 
bimorph actuators, and also restrict the utility of piezoelectric 
actuators in the area of measured devices requiring high reliability. To 
solve these problems, Zhu and Meng (1995) reported the fabrication 
of a functionally graded piezoelectric material (FGPM) actuator by 
using the powder mold stacking press method and discussed the 
experimental measurement of the displacement characteristics and 
compositional distribution of these actuators. The novel actuator with 
material coefficients varying smoothly along the layer thickness was 
sandwiched between distinct piezoelectric layers. Functionally graded 
materials (FGMs) have attracted much attention as advanced structural 
materials because of their heat-resistance properties. An advantage of 
a functionally graded (FG) plate over a laminated plate is that material 
properties vary continuously through the plate thickness, thus no 
sudden discontinuities in stresses occur across an interface between any 
two adjoining laminate thereby eliminating the delamination mode of 
failure. FGMs are usually made of a mixture of ceramic and metal, and can 
thus resist high-temperature conditions while maintaining toughness. 
The metal–ceramic composite plates are widely used in aircrafts, space 
vehicles, reactor vessels and other engineering applications. Unlike 
fiber–matrix composites, in which cracking and debonding may occur 
at high temperatures due to the material property mismatch at the 
interface of two discrete materials, FGMs have the advantage of being 
capable of withstanding severe high temperature while maintaining 
structural integrity. Due to this superior thermo-mechanical property, 
FGM plate structures have found a wide range of applications in many 
industries, especially in space vehicles and aircrafts, where they are 
very often subjected to high levels of thermal and dynamic loading, 
such as large temperature gradients and acoustic pressure. This may 
result in complicated stability and buckling behavior of the FGM plate 
due to the bending–stretching coupling and combined external loads. 
Hence, it is of prime importance to understand the buckling behavior of 
FGM plate structures. The piezoelectric materials have coupled effects 
between the elastic field and the electric field. Due to the widespread 
use of the piezoelectric materials in sensors and actuators, the study 
of embedded or surface-mounted piezoelectric materials has received 
considerable attention in recent years. There is a special interest in the 
modeling for piezoelectric coupled circular and annular plates since 
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piezoelectric material can be used as actuator in ultrasonic motor 
(Yamaguchi et al., 2013) in response to the need for a lightweight, high-
torque and low-speed motor for fractional horsepower applications. 
It is based on the concept of driving a rotor by mechanical vibration 
excited by piezoelectric patch on a stator via piezoelectric effect (Zhao, 
2011). When a periodic loading acts on the plane of a plate, it is well 
known that under some circumstances the ordinary forced response 
will become dynamically unstable, leading to an intense vibration, 
which is called the dynamic instability phenomenon. The stability 
problem for plates was solved first by Bodner (1938) applying series 
and Galerkin methods. By geometrically nonlinear formulation with 
accounting of energy dissipation, Bažant et al. (2010) presented the 
dynamic stability of structures like plates under various conditions 
like elastic, inelastic, fracture and also presented the damage theories. 
Many studies for free vibration and transient response of FGMs are 
available in the literature. Hosseini-Hashemi et al. (2011) presented 
an exact analytical approach for free vibration analysis of functionally 
graded rectangular plates. Efraim and Eisenberger (2007) derived the 
equations of motion including the effect of shear deformations using 
the first-order shear deformation theory, and solved exactly for various 
combinations of boundary conditions. By using the method of power 
series expansion of displacement components, Matsunaga (2008) 
derived a set of fundamental dynamic equations of a two-dimensional 
(2-D) higher-order theory for rectangular functionally graded (FG) 
plates through Hamilton’s principle. Zhao et al. (2009) analyzed free 
vibration of metal and ceramic functionally graded plates that uses the 
element-free kp-Ritz method. 

Although there is a considerable interest in investigating the 
performance and the behavior of FGM plates coupled with piezoelectric 
actuators, very limited research work is available on stability analysis of 
functionally graded piezoelectric plates. Koizumi (1993) first proposed 
the concept of FGM. Ebrahimi and Rastgoo presented an analytical 
solution for the free axisymmetric vibration of piezoelectric coupled 
thin circular (Ebrahimi & Rastgo, 2008a) and thin annular (Ebrahimi & 
Rastgo, 2008b) FGM plates. They also presented a theoretical analysis 
of smart moderately thick shear deformable annular (Ebrahimi et al., 
2009) and circular (Ebrahimi et al., 2008) functionally graded plate by 
using Mindlin’s plate theory. The nonlinear free and forced vibration 
behavior of functionally graded plate with piezoelectric layers in 
thermal environment was studied by Fakhari et al. (2011). Khorshidvand 
et al. (2012) theoretically investigated the thermoelastic buckling of 
functionally graded circular plates integrated with piezoelectric layers 
and a B-spline finite strip method for sandwich FGM plate structures 
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coupled with piezoelectric skins was proposed by Loja et al. (2013). 
Most recently Ebrahimi (2013) investigated analytically the vibrations 
and dynamic response of functionally graded plate integrated with 
piezoelectric layers in thermal environment. 

To the author’s best knowledge and according to the comprehensive 
literature survey, there is no work reported on the study of the dynamic 
stability of FGPM circular plates, so the main contribution of this 
paper is to present an analytical solution to the problem of dynamic 
stability of piezoelectric circular plates with functionally graded 
microstructure. The aim of the present paper is to derive the dynamic 
instability region of functionally graded piezoelectric circular plates 
from combination of variations and adjacent-equilibrium criterion 
and Bolotin’s method. Then a solution for the FG piezoelectric circular 
plates subjected to uniform compression loads is obtained. The effect 
of plate parameters such as thickness–radius ratios, power index, as 
well as electric field and mechanical loads on instability behavior of the 
plate is comprehensively investigated.

2.0 THEORY AND FORMULATION 

The functionally graded piezoelectric circular plate is assumed to be of 
radius R and thickness h. The material effective properties of the plate 
can be expressed as (Ebrahimi, 2013)
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where Peff is the effective material property of the functionally gradient material, Pu and 
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The fraction index n dictates the material variation profile through the plate thickness 
and may be varied to obtain the optimum distribution of component materials. From 
Equation (1) the effective Young’s modulus, E, mass density, ρ , piezoelectric stress 
constants, eij, and dielectric constants, ijξ ,of an FGM piezoelectric plate can be written 
as 
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The FG piezoelectric circular plate considered in this study is subjected to uniform 
radial compressive loading pr along its edge and periodic electric field E in the out-plane 
direction by 
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The constitutive equations of a FG piezoelectric material in two dimensional strain-
stress law for plane-stress condition are given by 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where rrε , θθε and θε r are the engineering strain components in the median surface,
rrk , θrk and θθk are the curvatures which can be expressed in terms of the displacement

components, u , v and w represent the corresponding components of the displacement of 
a point on the middle plate surface. In the following deduction, applying Hamilton’s 
principle while deriving the dynamic equation for the FGM piezoelectric circular plate, 
it can be expressed as 
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where δ is the first variation operator, V is the total energy, T is the kinetic energy, U is 
the potential energy, W is the work done by the periodic edge loading pr . It is well knew 
that 

 

The FG piezoelectric circular plate considered in this study is 
subjected to uniform radial compressive loading pr along its 
edge and periodic electric field E in the out-plane direction by
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where rrε , θθε and θε r are the engineering strain components in the median surface,
rrk , θrk and θθk are the curvatures which can be expressed in terms of the displacement

components, u , v and w represent the corresponding components of the displacement of 
a point on the middle plate surface. In the following deduction, applying Hamilton’s 
principle while deriving the dynamic equation for the FGM piezoelectric circular plate, 
it can be expressed as 
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where δ is the first variation operator, V is the total energy, T is the kinetic energy, U is 
the potential energy, W is the work done by the periodic edge loading pr . It is well knew 
that 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where rrε , θθε and θε r are the engineering strain components in the median surface,
rrk , θrk and θθk are the curvatures which can be expressed in terms of the displacement

components, u , v and w represent the corresponding components of the displacement of 
a point on the middle plate surface. In the following deduction, applying Hamilton’s 
principle while deriving the dynamic equation for the FGM piezoelectric circular plate, 
it can be expressed as 
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where δ is the first variation operator, V is the total energy, T is the kinetic energy, U is 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where rrε , θθε and θε r are the engineering strain components in the median surface,
rrk , θrk and θθk are the curvatures which can be expressed in terms of the displacement

components, u , v and w represent the corresponding components of the displacement of 
a point on the middle plate surface. In the following deduction, applying Hamilton’s 
principle while deriving the dynamic equation for the FGM piezoelectric circular plate, 
it can be expressed as 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where rrε , θθε and θε r are the engineering strain components in the median surface,
rrk , θrk and θθk are the curvatures which can be expressed in terms of the displacement

components, u , v and w represent the corresponding components of the displacement of 
a point on the middle plate surface. In the following deduction, applying Hamilton’s 
principle while deriving the dynamic equation for the FGM piezoelectric circular plate, 
it can be expressed as 
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where δ is the first variation operator, V is the total energy, T is the kinetic energy, U is 
the potential energy, W is the work done by the periodic edge loading pr . It is well knew 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where rrε , θθε and θε r are the engineering strain components in the median surface,
rrk , θrk and θθk are the curvatures which can be expressed in terms of the displacement

components, u , v and w represent the corresponding components of the displacement of 
a point on the middle plate surface. In the following deduction, applying Hamilton’s 
principle while deriving the dynamic equation for the FGM piezoelectric circular plate, 
it can be expressed as 
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where δ is the first variation operator, V is the total energy, T is the kinetic energy, U is 
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radial compressive loading pr along its edge and periodic electric field E in the out-plane 
direction by 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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where rrε , θθε and θε r are the engineering strain components in the median surface,
rrk , θrk and θθk are the curvatures which can be expressed in terms of the displacement

components, u , v and w represent the corresponding components of the displacement of 
a point on the middle plate surface. In the following deduction, applying Hamilton’s 
principle while deriving the dynamic equation for the FGM piezoelectric circular plate, 
it can be expressed as 
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where δ is the first variation operator, V is the total energy, T is the kinetic energy, U is 
the potential energy, W is the work done by the periodic edge loading pr . It is well knew 
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where { }σ  is the stress vector, { }D is the electrical displacement vector, the Poisson’s 
ratio ν is assumed to be constant across the plate thickness. According to the Love-
Kirchhoff assumptions, we get 
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Substituting Equations (4), (5) and (6) into Equation (7), integrating with respect to z
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According Hamilton’s principle, the integrand F must satisfy the Euler equations of the 
calculus of variations. Results in the dynamic equilibrium equations in terms of the 
functional F as 
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substituting Equations (6) and (12) into Equation (14), the dynamic equilibrium 
equations for general circular plate composed of FG piezoelectric material are given by 
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substituting Equations (6) and (12) into Equation (14), the dynamic equilibrium 
equations for general circular plate composed of FG piezoelectric material are given by 
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substituting Equations (6) and (12) into Equation (14), the dynamic equilibrium 
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substituting Equations (6) and (12) into Equation (14), the dynamic equilibrium 
equations for general circular plate composed of FG piezoelectric material are given by 
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substituting Equations (6) and (12) into Equation (14), the dynamic equilibrium 
equations for general circular plate composed of FG piezoelectric material are given by 
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Introduction of the appropriate constitutive relations for the moment intensities and
rotations reduces the third of Equation (15), the dynamic equation for the FGM 
piezoelectric circular plate can be derived as

∫∫
−−

=+∇−









−−−−−−−++−

−
+




















+−+








++−∇

−

=++

=
−

++

2

2
,

2

2
31

2

,3
,,

2
,

3
,,

32
,

2
,

3
,

2

,
2
,

2
,,

,
4

2

,,

,,

0

2
1

2
1

021

01

h

h
ttz

h

h

rrr
rrrrrrr

r
r

r
rrr

rrr

r
rrr

dzwdzEew

u
r

v
r

u
r

u
r

u
r
u

r
u

r
u

r
v

r
vC

r
w

r
w

N
r

w
r

w
NwNwB

N
r

N
r

N

r
NNN

r
N

ρ

ν

ν

θθθθθθθθθθ

θθ
θ

θθ
θ

θθθθ

θ
θθ

 

 
 
 
 

 
(17)

 
 
 
 
 

where 

2

2

2
2 11

θ∂
∂

+







∂
∂

∂
∂

=∇
rr

r
rr
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The dynamic stability equations of thin FG piezoelectric circular plate are derived using 
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Introduction of the appropriate constitutive relations for the moment intensities and
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where the incremental displacement (u1, v1, w1) is arbitrarily small and, tentatively, (u0,
v0, w0) and (u, v, w) are any two adjacent equilibrium configurations. The term with 0 
subscripts correspond to the u0, v0, w0 displacement, and the rN∆ , θN∆ , θrN∆ are
increments corresponding to u1, v1, w1. Let 1rN , 1θN and 1θrN represent the parts of 

rN∆ , θN∆ and θrN∆ respectively, that are linear in u1, v1, w1. For example, from Equations
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Eliminating the high order item, and considering 0w and its derivatives are equal to zero 
for in-plane edge loading, therefore
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then introduce into Equation (17), and omit the high order penny item, we arrive at the 
following equations governing the dynamic stability of the FG piezoelectric circular 
plate, that is 
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where 

 

where the incremental displacement (u1, v1, w1) is arbitrarily small and, 
tentatively, (u0, v0, w0) and (u, v, w) are any two adjacent equilibrium 
configurations. The term with 0 subscripts correspond to the u0, v0, w0 
displacement, and the rN∆ , θN∆ , θrN∆   are increments corresponding to 
u1, v1, w1. Let 1rN  , 1θN  and 1θrN  represent the parts of rN∆ , θN∆ and θrN∆
respectively, that are linear in u1, v1, w1. For example, from Equations 
(6) and (16), we have
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where the incremental displacement (u1, v1, w1) is arbitrarily small and, tentatively, (u0,
v0, w0) and (u, v, w) are any two adjacent equilibrium configurations. The term with 0 
subscripts correspond to the u0, v0, w0 displacement, and the rN∆ , θN∆ , θrN∆ are
increments corresponding to u1, v1, w1. Let 1rN , 1θN and 1θrN represent the parts of 

rN∆ , θN∆ and θrN∆ respectively, that are linear in u1, v1, w1. For example, from Equations
(6) and (16), we have 
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Eliminating the high order item, and considering 0w and its derivatives are equal to zero 
for in-plane edge loading, therefore
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then introduce into Equation (17), and omit the high order penny item, we arrive at the 
following equations governing the dynamic stability of the FG piezoelectric circular 
plate, that is 
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(21) 
 
 
 
 
 

where 

 

Eliminating the high order item, and considering 0w  and its derivatives 
are equal to zero for in-plane edge loading, therefore
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where the incremental displacement (u1, v1, w1) is arbitrarily small and, tentatively, (u0,
v0, w0) and (u, v, w) are any two adjacent equilibrium configurations. The term with 0 
subscripts correspond to the u0, v0, w0 displacement, and the rN∆ , θN∆ , θrN∆ are
increments corresponding to u1, v1, w1. Let 1rN , 1θN and 1θrN represent the parts of 

rN∆ , θN∆ and θrN∆ respectively, that are linear in u1, v1, w1. For example, from Equations
(6) and (16), we have 
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Eliminating the high order item, and considering 0w and its derivatives are equal to zero 
for in-plane edge loading, therefore
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then introduce into Equation (17), and omit the high order penny item, we arrive at the 
following equations governing the dynamic stability of the FG piezoelectric circular 
plate, that is 
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where 

 

then introduce into Equation (17), and omit the high order penny item, 
we arrive at the following equations governing the dynamic stability of 
the FG piezoelectric circular plate, that is
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where the incremental displacement (u1, v1, w1) is arbitrarily small and, tentatively, (u0,
v0, w0) and (u, v, w) are any two adjacent equilibrium configurations. The term with 0 
subscripts correspond to the u0, v0, w0 displacement, and the rN∆ , θN∆ , θrN∆ are
increments corresponding to u1, v1, w1. Let 1rN , 1θN and 1θrN represent the parts of 

rN∆ , θN∆ and θrN∆ respectively, that are linear in u1, v1, w1. For example, from Equations
(6) and (16), we have 
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Eliminating the high order item, and considering 0w and its derivatives are equal to zero 
for in-plane edge loading, therefore
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then introduce into Equation (17), and omit the high order penny item, we arrive at the 
following equations governing the dynamic stability of the FG piezoelectric circular 
plate, that is 
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where 
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4.0 BOUNDARIES OF INSTABILITY REGIONS

Considering the axisymmetric dynamic stability of the plate, 0rN  and 0θN are the pre-
buckling forces that must be calculated form an equilibrium analysis of the plate, 
therefore 
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4.0 BOUNDARIES OF INSTABILITY REGIONS

Considering the axisymmetric dynamic stability of the plate, 0rN  and 0θN are the pre-
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4.0 BOUNDARIES OF INSTABILITY REGIONS

Considering the axisymmetric dynamic stability of the plate, 0rN  and 0θN are the pre-
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and substituting Equations (26) and (27) in the first stability Equation 
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4.0 BOUNDARIES OF INSTABILITY REGIONS

Considering the axisymmetric dynamic stability of the plate, 0rN  and 0θN are the pre-
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Multiply the item rdrr)(ψ in Equation (42), and integral along the whole plate, obtains 
following differential equations set: 
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Equation (43) is well-known Mathieu equation aµ is the excitation parameter, and aϖ is
the free vibration frequency of the plate loaded by constant radial force and electric 
field. crp is the Euler buckling load. aω express the boundary frequencies of the 
instability regions. Equation (43) is a system of second-order differential equations with 
periodic coefficients of the Mathieu type. Its periodic solution can be obtained through 
the Bolotin’s method (Bažant et al., 2010). The stability boundaries can be constructed 
by periodic solutions of periods T and 2T, where ωπ2=T . In general, the solutions with 
period 2T are dominating. A first order approximation to the solution with periodicity 
2T can be derived in the form of 
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Equation (43) is well-known Mathieu equation aµ is the excitation parameter, and aϖ is
the free vibration frequency of the plate loaded by constant radial force and electric 
field. crp is the Euler buckling load. aω express the boundary frequencies of the 
instability regions. Equation (43) is a system of second-order differential equations with 
periodic coefficients of the Mathieu type. Its periodic solution can be obtained through 
the Bolotin’s method (Bažant et al., 2010). The stability boundaries can be constructed 
by periodic solutions of periods T and 2T, where ωπ2=T . In general, the solutions with 
period 2T are dominating. A first order approximation to the solution with periodicity 
2T can be derived in the form of 

{ } { } )2cos()2sin()( tbtatf ωω +=   (45)

 

Substitution of Equations (2), (36), (37) and (41) into Equation (34) yields

024 =−∇ ψϖψ MD   (39)

where )()(,,...3,2,1,0 xIandxJn nn= are the Bessel function of first type and 
first modified Bessel functions of first type, respectively. Rλ are the roots of frequency 
equation

0)()()()( =− RI
dr

RdJ
dr

RdIrJ n
nn

n λλλλ   (40)

The natural frequencies are related to these roots by 

M
D4

2 λϖ =   (41)

Substitution of Equations (2), (36), (37) and (41) into Equation (34) yields 

0cos 4
2

2
310

2

2
310

2
2

2

=












∇

























−+














−++ ∫∫

−−

ftdzEepdzEepM
dt

fdM zt

h

h
rz

h

h

ψωψϖψ   (42)

Multiply the item rdrr)(ψ in Equation (42), and integral along the whole plate, obtains 
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Equation (43) is well-known Mathieu equation aµ is the excitation parameter, and aϖ is
the free vibration frequency of the plate loaded by constant radial force and electric 
field. crp is the Euler buckling load. aω express the boundary frequencies of the 
instability regions. Equation (43) is a system of second-order differential equations with 
periodic coefficients of the Mathieu type. Its periodic solution can be obtained through 
the Bolotin’s method (Bažant et al., 2010). The stability boundaries can be constructed 
by periodic solutions of periods T and 2T, where ωπ2=T . In general, the solutions with 
period 2T are dominating. A first order approximation to the solution with periodicity 
2T can be derived in the form of 
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Equation (43) is well-known Mathieu equation aµ is the excitation parameter, and aϖ is
the free vibration frequency of the plate loaded by constant radial force and electric 
field. crp is the Euler buckling load. aω express the boundary frequencies of the 
instability regions. Equation (43) is a system of second-order differential equations with 
periodic coefficients of the Mathieu type. Its periodic solution can be obtained through 
the Bolotin’s method (Bažant et al., 2010). The stability boundaries can be constructed 
by periodic solutions of periods T and 2T, where ωπ2=T . In general, the solutions with 
period 2T are dominating. A first order approximation to the solution with periodicity 
2T can be derived in the form of 
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Multiply the item rdrr)(ψ in Equation (42), and integral along the whole plate, obtains 
following differential equations set: 
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Equation (43) is well-known Mathieu equation aµ is the excitation parameter, and aϖ is
the free vibration frequency of the plate loaded by constant radial force and electric 
field. crp is the Euler buckling load. aω express the boundary frequencies of the 
instability regions. Equation (43) is a system of second-order differential equations with 
periodic coefficients of the Mathieu type. Its periodic solution can be obtained through 
the Bolotin’s method (Bažant et al., 2010). The stability boundaries can be constructed 
by periodic solutions of periods T and 2T, where ωπ2=T . In general, the solutions with 
period 2T are dominating. A first order approximation to the solution with periodicity 
2T can be derived in the form of 
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Multiply the item rdrr)(ψ in Equation (42), and integral along the whole plate, obtains 
following differential equations set: 
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Equation (43) is well-known Mathieu equation aµ is the excitation parameter, and aϖ is
the free vibration frequency of the plate loaded by constant radial force and electric 
field. crp is the Euler buckling load. aω express the boundary frequencies of the 
instability regions. Equation (43) is a system of second-order differential equations with 
periodic coefficients of the Mathieu type. Its periodic solution can be obtained through 
the Bolotin’s method (Bažant et al., 2010). The stability boundaries can be constructed 
by periodic solutions of periods T and 2T, where ωπ2=T . In general, the solutions with 
period 2T are dominating. A first order approximation to the solution with periodicity 
2T can be derived in the form of 
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of the principal instability region, we substitute )(tf of Equation (45) 
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Equation (46) is referred to as the equation of boundary frequencies. It is used to dictate 
the dynamic stability of the FG piezoelectric plate and calculate the boundaries of 
instability regions. 

5.0 RESULTS AND DISCUSSION 

Axisymmetric stability of a piezoelectric circular plate made of functionally graded 
microstructure is considered. The edge boundary conditions are clamped. The state of 
periodic load is the uniform pulsating radial compressive load and electric field in the 
out-plane direction, which may be defined as
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where α is the static load factor, and β is the dynamic load factor. In the following, let

5.0=β , The material properties of the FG piezoelectric plate are listed in Table 1 some 
of which can be directed by the reference (Takagi et al., 2002). If there is no statement 
in the following discuses, the materials distribution of the plate is from PZT/30%Pt to 
PZT from top to bottom. Results on the dynamic instability frequencies for different 
cases are given in Table 2, where, 2

1aω  and 2
2aω correspond to the frequencies dictated by 

Equations (46a) and (46b), respectively, and 2
0aω express the free vibration frequency of

the plate. Figure 1 is the sketch map of the frequency unstable region. The applied 
periodic voltage gives rise to an average electric field in the radial direction. 

Table1. Density, elastic and piezoelectric constants for the PZT/Pt material (Takagi et al., 2002)
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Equation (46) is referred to as the equation of boundary frequencies. It 
is used to dictate the dynamic stability of the FG piezoelectric plate and 
calculate the boundaries of instability regions. 

5.0 RESULTS AND DISCUSSION 
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functionally graded microstructure is considered. The edge boundary 
conditions are clamped. The state of periodic load is the uniform 
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where α is the static load factor, and β is the dynamic load factor. In the following, let

5.0=β , The material properties of the FG piezoelectric plate are listed in Table 1 some 
of which can be directed by the reference (Takagi et al., 2002). If there is no statement 
in the following discuses, the materials distribution of the plate is from PZT/30%Pt to 
PZT from top to bottom. Results on the dynamic instability frequencies for different 
cases are given in Table 2, where, 2

1aω  and 2
2aω correspond to the frequencies dictated by 

Equations (46a) and (46b), respectively, and 2
0aω express the free vibration frequency of

the plate. Figure 1 is the sketch map of the frequency unstable region. The applied 
periodic voltage gives rise to an average electric field in the radial direction. 

Table1. Density, elastic and piezoelectric constants for the PZT/Pt material (Takagi et al., 2002)
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Figure 1. Sketch map of the unstable region in the frequency domain

 
It is seen from Table 2 that as the static electric field can make the unstable regions 
move to higher or lower frequency region, and the dynamic electric field can reduce or 
expand the unstable region. The positive electric field can make the structure unstable 
and the negative electric field can decrease the effect. With Table 2, the results show the 
positive electric field reduces the unstable region and the negative electric field expands 
it, but the converse piezoelectric effects have slight effect on the unstable region. Notice 
that the coercive electric field for most piezoelectric ceramic is of order 10

6 
V/m; we 

can conclude that the electric field (always less than 10
6 

V/m in the applications) alone 
can only slightly affect the unstable region.

Figure 2 shows the buckling load crp versus volume fraction exponent n for h/R = 0.04, 
0.08, and 0.1, the materials of the top and bottom surfaces of the plate are PZT/30%Pt 
and PZT, respectively. As it can be seen the volume fraction exponent n of FG plate 
affects the critical buckling load and as n increases, the buckling load of the FG plate 
increases. This effect is dominant for higher h/R s. It is also shown that as h/R increases, 
the buckling load of the FG plate increases for all values of volume fraction exponents.

Figure 3 shows the buckling load crp versus volume fraction exponent n for two case of 
components of the plate are exchange from PZT/30%Pt to PZT along top to bottom for 
h/R = 0.1 and vice versa. The value of the exponent n is varied between 0 and10. It is 
seen that the buckling load the mechanical instability of FGM piezoelectric plate is 
lower than that for fully PZT/30%Pt plates, but upper than fully PZT plates. 

Table 2. The unstable region of frequency rate+, with the cases (h = 0.1, R = 1, 0=α , 5.0=β ) 
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unstable regions move to higher or lower frequency region, and the 
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positive electric field can make the structure unstable and the negative 
electric field can decrease the effect. With Table 2, the results show 
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most piezoelectric ceramic is of order 106 V/m; we can conclude that the 
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electric field (always less than 106 V/m in the applications) alone can 
only slightly affect the unstable region. 

Figure 2 shows the buckling load crp versus volume fraction exponent n 
for h/R = 0.04, 0.08, and 0.1, the materials of the top and bottom surfaces 
of the plate are PZT/30%Pt and PZT, respectively. As it can be seen the 
volume fraction exponent n of FG plate affects the critical buckling load 
and as n increases, the buckling load of the FG plate increases. This 
effect is dominant for higher h/R s. It is also shown that as h/R increases, 
the buckling load of the FG plate increases for all values of volume 
fraction exponents. 

Figure 3 shows the buckling load crp versus volume fraction exponent 
n for two case of components of the plate are exchange from PZT/30%Pt 
to PZT along top to bottom for h/R = 0.1 and vice versa. The value of the 
exponent n is varied between 0 and10. It is seen that the buckling load 
the mechanical instability of FGM piezoelectric plate is lower than that 
for fully PZT/30%Pt plates, but upper than fully PZT plates. 

Table 2. The unstable region of frequency rate ϖωa  , with the cases 
(h = 0.1, R = 1, 5.0=β )

Model Electric 
field

Frequency 
ratio n = 0 n = 1 n = 2 n = 3

 
 
 
 

M = 0

00 =zE
0=ztE

ϖω 1a 3 3 3 3

ϖω 0a 4 4 4 4

ϖω 2a 5 5 5 5

6
0 10=zE

0=ztE

ϖω 1a 2.930 2.977 2.986 2.990

ϖω 0a 3.930 3.977 3.986 3.990

ϖω 2a 4.930 4.977 4.986 4.990
6

0 10−=zE
0=ztE

ϖω 1a 3.070 3.023 3.014 3.010

ϖω 0a 4.070 4.023 4.014 4.010

ϖω 2a 5.070 5.023 5.014 5.010

00 =zE
610=ztE  

ϖω 1a .965 2.989 2.993 2.995

ϖω 0a 4 4 4 4
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00 =zE
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Figure 2. Buckling load crp of the different volume fraction exponent n with the cases (m = 0, 0=α , h/R
= 0.1, h/R = 0.08, h/R = 0.04)

 
Figure 3. Buckling load crp of the different volume fraction exponent n of reverse components of FG with 
the cases (m = 0, h/R = 0.1, 0=α )

 

Figure 4. Buckling load crp of the different thickness with the cases (m = 0, h/R = 0.1, 0=α , n = 0,2)
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Figure 4. Buckling load crp of the different thickness with the cases (m = 0, h/R = 0.1, 0=α , n = 0,2)
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Figure 2. Buckling load crp of the different volume fraction exponent n with the cases (m = 0, 0=α , h/R
= 0.1, h/R = 0.08, h/R = 0.04)

 
Figure 3. Buckling load crp of the different volume fraction exponent n of reverse components of FG with 
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Figure 4. Buckling load crp of the different thickness with the cases (m = 0, h/R = 0.1, 0=α , n = 0,2)
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Figure 5. Free vibration frequency rate ϖωa under different model m, with the cases (n = 2, h/R =
0.1, 0=α )

Figure 4 shows the buckling load crp versus thickness of plate (h) for various values of 
the volume fraction exponent (n = 0, 2) for the clamped edges. It is observed that as the 
values of (h) increases, the buckling load increases. Figure 5 shows the effect of 
different models on free vibration frequency rates of FG piezoelectric circular plate for 
three electric fields. It is seen that the effect of the electric field on variation of vibration 
frequency rates become faintness when the model number increases. Figure 6 shows the 
free vibration frequency rate versus static loads 0p for m = 2, n = 2 and h/R = 0.1. The 
obtained results reveal that the thickness of the plate can change the free vibration 
frequency largely; on the contrary, the effect of electric field is negligible.

Figure 6. Free vibration frequency rate ϖωa under different mechanical loads 0p with the cases (m = 2, 
n = 2, h/R = 0.1)

Figure 7 illustrates the effects of volume fraction exponent n on the free vibration 
frequency rate, where m = 0, h/R = 0.1 and 0=α . We can see that the effect of electric is 
decrease as the larger value of k is increase. 

 

Figure 5. Free vibration frequency rate ϖωa  under different model m, 
with the cases (n = 2, h/R = 0.1, 0=α )
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= 0.1, h/R = 0.08, h/R = 0.04)

 
Figure 3. Buckling load crp of the different volume fraction exponent n of reverse components of FG with 
the cases (m = 0, h/R = 0.1, 0=α )

 

Figure 4. Buckling load crp of the different thickness with the cases (m = 0, h/R = 0.1, 0=α , n = 0,2)

 

 versus thickness of plate (h) for 
various values of the volume fraction exponent (n = 0, 2) for the clamped 
edges. It is observed that as the values of (h) increases, the buckling 
load increases. Figure 5 shows the effect of different models on free 
vibration frequency rates of FG piezoelectric circular plate for three 
electric fields. It is seen that the effect of the electric field on variation 
of vibration frequency rates become faintness when the model number 
increases. Figure 6 shows the free vibration frequency rate versus static 
loads 0p  for m = 2, n = 2 and h/R = 0.1. The obtained results reveal 
that the thickness of the plate can change the free vibration frequency 
largely; on the contrary, the effect of electric field is negligible.
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Figure 7 illustrates the effects of volume fraction exponent n on the free 
vibration frequency rate, where m = 0, h/R = 0.1 and 0=α . We can see 
that the effect of electric is decrease as the larger value of k is increase. 

 

Figure 7. Free vibration frequency rate ϖωa  of volume fraction exponent n under the different electric 
field with the cases (m = 0, h/R = 0.1, 0=α )

6.0 CONCLUSIONS

Based on Love-Kirchhoff hypothesis, the Sander’s non-linear strain-displacement 
relation and variational formulation the dynamic stability analysis of piezoelectric 
circular plate made of functional graded microstructure is presented. The plate is 
subjected to a radial loading and electric field in the normal direction. After deriving the 
Mathieu-Hill equations governing the instability problem, the Bolotin’s method is 
employed to obtain the dynamic instability regions. Obtained results show that the 
piezoelectric effect only slightly affects the unstable region whilst the functionally 
graded composite materials plays a significant role in changing the unstable regions and 
the buckling loads. So the designer should consider the component of the FG 
piezoelectric rather than the piezoelectric effect. 
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Figure 7. Free vibration frequency rate ϖωa  of volume fraction 
exponent n under the different electric field with the cases 

(m = 0, h/R = 0.1, 0=α  )

6.0 CONCLUSIONS

Based on Love-Kirchhoff hypothesis, the Sander’s non-linear strain-
displacement relation and variational formulation the dynamic stability 
analysis of piezoelectric circular plate made of functional graded 
microstructure is presented. The plate is subjected to a radial loading 
and electric field in the normal direction. After deriving the Mathieu-
Hill equations governing the instability problem, the Bolotin’s method 
is employed to obtain the dynamic instability regions. Obtained results 
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show that the piezoelectric effect only slightly affects the unstable region 
whilst the functionally graded composite materials plays a significant 
role in changing the unstable regions and the buckling loads. So the 
designer should consider the component of the FG piezoelectric rather 
than the piezoelectric effect. 
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