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ABSTRACT

Physical lifting tasks commonly involve two types of body postures, 
namely, squat lifting and stoop lifting. Studies shows improper body 
posture during lifting task has detrimental effect to human lower-back 
region over extended period of time. This is because generally, stoop-lifting 
posture exerts relatively higher moments and compression forces on human 
back than squat lifting posture. However, this claim was never thoroughly 
examined and validated from mathematical model approach. This paper 
proposes a mathematical model to represent the lower extremity of human 
body during lifting tasks, based on a two-link kinematic open chain in two 
dimensional spaces. Thus, all moment of torque and their effect to every 
part of lower extremity of human body can be thoroughly analyzed.

KEYWORDS: Lifting techniques, Mathematical Model, Kane’s method, 
Equation of motion.   

1.0	INTRODU CTION

Issues on back problem tend to be a major health trouble since the 90s’. This 
problem contributes to tremendous health care costs, human suffering and 
lost productivity in company. In Malaysia, however, is still at a building 
stage about the awareness of back pain. Most of industrial workers consider 
this as petty matters, especially in developing country. Therefore, the 
Occupational Safety and Health (OSH) practitioners need more promotions 
and enhancing awareness. Due to awareness level of back pain, (Baba et.al., 
2010) have examined the prevalence of Musculoskeletal Disorders (MSD) 
among workers in manufacturing industry in Malaysia. They investigated 
this problem through a Body Parts Symptoms Survey (BPSS) by evaluating 
the comfort level to all body parts that relate to back problem. Besides, (Ismail 
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et.al., 2009) also conducted a survey questionnaire by utilizing the Ovako 
Work Assessment System (OWAS) tool in order to access the area discomfort 
of body. Nevertheless, these surveys are not considered as biomechanics 
criterion which is a crucial part in demonstrating the assessment of back 
problem. Research in Malaysia on biomechanical analysis in lifting task is due 
to lack of interest or awareness on this problem (Granata et.al., 2001),(Kuzkaya 
et.al.,1997),(Van and Hoozemans,1999). Thus, biomechanists and ergonomists 
are recognized the analysis in order to express a significant on the prevention 
of low back pain.

Most of studies have examined a physical lifting task involving lifting techniques 
which contribute an effect to human-back while performing unnatural 
postures. Thereby, a particular lifting technique is most crucial factors that can 
prevent and reduce the risk of back problem. Typically, physical lifting task 
consist two types of body postures, namely, squat lifting and stoop lifting. 
The study by (Emolle et. al.) mainly considers these techniques to access the 
back problem by designing a suitable protocol. In past studies have revealed 
a biomechanical model of trunk which an enable to minimize potentially 
injuries on low back. Most commonly, development of biomechanical and 
mathematical model retained physical’s law calculations in order to estimate 
desired results. The difference between them are inherent while mathematical 
model are required a complex derivation on calculation. The study of lifting 
task has become an important aspect of investigate low back problem while 
researchers conceive a biomechanical and mathematical approaches. It is 
imperative ideas that able to represent human lifting movement based on 
kinetic and kinematic data.

The structure of this paper is organized as follows: Section 2 describes the 
related works on lifting technique and also model development representing a 
motion of lifting. The equation of motion for body movement is demonstrated 
in section 3. In section 4, results of experiment on lifting task is presented and 
discussed. Finally, the main findings of this research work are concluded in 
section 5.

2.0	RELATED  WORKS

2.1	 Biomechanical Analysis of Lifting

Lifting has received considerable research attention when concerning to the 
human back problem (Kuzkaya et.al.,1997). In lifting motion, researchers used 
a variety of patterns of motion. These patterns are classified on the basis 
postures of lifting which are back lifts or stoop lifts, and squat lifts. Stoop 
lifts are described as hips flexed and knee straight whereas squat lifts are 
defined as when knees flexed and back vertical. Most researches have pointed 
out that peoples or workers often use stoop lifting have more stressful to the 
spine compared to squat lifting. In these cases, they examined the effect of 
two different lifting techniques on lower back. The results showed the squat 
lift produced less of torque on hip joint than stoop lift. Overall studies from 
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(Emolle et. al.) demonstrated a greater risk of lower back pain resulting from 
the stoop lift.  Therefore, some authors suggested that the back should on the 
right position while lifting the heavy load for preventing the back pain. The 
right position of back should be straight and vertical or it is called the squat 
lifting. 

From the subjective point of view, squat lifting was found more tiring than 
stoop lifting. On the other hand, squat lifting are most demanding compared 
to stoop lifting in terms of physiological cost (Kothiyal et.al.,1992). (Kuzkaya 
et.al.,1997) explained that squat lifting are required less work, since upper 
body mass not moved and may result in lower spinal compression forces. 
Commonly, most researchers advised the squat lifting technique remains as 
erect as possible on back and flexed the knees (Van and Hoozemans,1999). They 
have reviewed systematically on comparison between the stoop and squat 
lifting technique with considering the biomechanical studies. They showed 
the result which are squat lifting have higher moment and compressive force. 
Also, they recommend that their biomechanical literatures does not support 
for the squat lifting technique as a better technique for preventing low back 
problem in lifting task. 

Therefore, a model for representing these issues needs more concentrate with 
demonstrating variations in lifting styles. Moment of forces and dynamic 
factors can be evaluated and produced from model development.

2.2	 Mathematical Models

In mathematical modeling, analyses of joint torques or moment of forces acting 
on the body segments are evaluated. For example, Chaffin performed analysis 
of forces for two body segment under static planar conditions. Researcher 
used Newtonian mechanic to determine the force action on segment. Besides, 
a two-link model of arm was developed by Pearson et al. They computed 
forces and torques which present at elbow and shoulder part.

Researches on biomechanical models have demonstrated by Chaffin and 
Chaffin and Baker. The developed the model to evaluate stress caused by 
external load during lifting in sagittal plane. The model also expanded 
to predict the compressive force sustained by lumbar spine. This model 
approach has been adopted a simple model of lifts with concerning ankle 
angle trajectory and motion of knees [4]. A three segment model of human 
body have been used from (Kothiyal et.al.,1992),(Chaffin et.al.,1991). They 
used a dynamic equation of motion using Newton-Euler dynamic algorithm 
to evaluate reactive moment of the body. Chaffin developed a seven-link, two-
dimensional static model to calculate joint force and moment during lifting. 
This model was expanded with Freivalds et al in order to estimate the sagittal 
plane kinematic which consider both forces (external and internal) loading 
when considering the compression force on spine.



ISSN: 2180-1053        Vol. 4     No. 2    July-December 2012

Journal of Mechanical Engineering and Technology 

34

Modeling approaches can determine by physical models. Physical model 
is constructed physically to investigate related quantities. The model may 
serve to check the result of mathematical modeling (Kothiyal et.al.,1992). 
For instance, K.P. Granati and S.E.Wilson are designed a three-dimensional 
inverted double pendulum or called three dimensional, two segment model to 
determine spinal stability of trunk posture (Granata et.al.,2001). Little research 
is investigated the compression force and other kinematic value of body using 
Kane’s method during lifting task. Several researchers have been developed 
the arm models via Kane’s method during badminton activity (Fadiah and 
Azmin, 2009).The study are used inverse dynamic approach to calculate the 
torques at each joint. The results showed that elbow joint produce a higher 
value of torque during performing an activity. It proved that the equation of 
motion can be used in order to estimate the unknown value (torque) using 
kinematic data. Otherwise, (Sharifah Alwiah et.al., 2011) also designed a 
mathematical model via Kane’s equation to solve trunk motion with load 
carriage. They utilized two-link planar of rigid bodies in two-dimensional 
space for presenting trunk and head inclination angles.

3.0	 MATERIAL AND METHODS

3.1	R esearch Method

A subject without joint and muscular pathology is selected among UniMAP 
student for performing a lifting task. The subject characteristics are measured 
before perform the task, which are 1.59 m in height and 52 kg in weight. 
There were two trials involved and each trial consists of 300 frames starting 
standing position until lifting a load. The recording system is utilizes five 
Oqus cameras with 70 Hz to collect the motion data. The cameras captured 
a reference structure with seven reflective markers in space of laboratory. A 
Qualysis software is used to analyze all trials and acquire the kinematic data 
as an input for mathematical model developed.

3.2	 Mathematical Model for Whole Body (Sagittal Plane)

In this study, a mathematical model is developed in two-dimensional space to 
illustrate the inclination angles of whole body during lifting postures. Figure 
1 shows a skeletal model of the lower extremity of a human body in sagittal 
(side) plane. The model is used Kane’s dynamics equation of motion with 
created from two degree of freedom (DoF) (Yamaguchi, 2001).  This model is 
showed in two-link planar kinematic chain.

Figure 1 illustrated two-link kinematic open chain for the lower extremity 
in sagittal plane while lifting posture. Rigid bodies A and B, and the ground 
reference frame N are connected together within frictionless pins at points
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The respective bodies of mass centroids ( *A  and *B ) are located at distances Aρ  and Bρ  from their 
proximal ends. A torque, /N Aτ , is exerted by N on A and another torque. An external influence at 
endpoint of linkage

0C  is exerting by force, 1 1 2 2F f n f n= +
r . From Figure 1, the symbols used in this 

model are: 

 = Joints 

 =center of mass 

=segment A (Ankle-Knee) 

=segment B (Knee-Hip) 

* *,A B  = center of mass of segments A and B respectively 

1 2 3 1 2 3 1 2 3, , , , , , , ,n n n a a a b b b% % %% % % % % % = mutually orthogonal unit 

,A Bρ ρ  = distances of center of mass from their proximal ends 

,A Bl l  = length of segments 

/ /,N A A Bτ τ  = Torques of each joints 

1 1 2 2F f n f n= +
r  = endpoint force of arbitrary direction and magnitude 

Derivation expressions for the angular velocity and angular acceleration are the first step to describe 
each rigid body comprising the system by utilizing Kane’s method. The angular quantities allow the 
velocities and accelerations within the system to be computed along with geometrical information. All 
of descriptions related to determine the motions, there are called kinematical equations. 

The dot products of vectors are computed in different reference frames via direction cosine table using 
Kane’s methods. Therefore, the angular velocities and angular accelerations of bodies A and B with 
respect to reference frame N can be determined, 

General equations for angular velocities: 

N B qkω ≡
r %&                                                                                       [1] 

A 

B 

 are located at distances     
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Derivation expressions for the angular velocity and angular acceleration are 
the first step to describe each rigid body comprising the system by utilizing 
Kane’s method. The angular quantities allow the velocities and accelerations 
within the system to be computed along with geometrical information. All 
of descriptions related to determine the motions, there are called kinematical 
equations.

The dot products of vectors are computed in different reference frames via 
direction cosine table using Kane’s methods. Therefore, the angular velocities 
and angular accelerations of bodies A and B with respect to reference frame N 
can be determined,

General equations for angular velocities:
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N A q aω =
r

& %

N Ba qk≡
r %&&

Where, partial angular velocities  A Bωr , ( i=1,2,3,…,n),as defined for the rotation of a rigid body B in an 
inertial reference frame N. q& is called the angular velocity of B in N . k%  is a unit vector parallel to the 
instantaneous rotation axis of B in N. 

In this case, the angular velocities of bodies A and B with respect to reference frame N are obtained to 
be,
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General equations for angular accelerations: 

Where, partial angular accelerations  A Bar , ( i=1,2,3,…,n),as defined for the rotation of a  rigid body B 
in an inertial reference frame N. q&& is called the angular accelerations of B in N . k%  is a unit vector 
parallel to the instantaneous rotation axis of B in N. 
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The velocities of all points with force acting through body and accelerations of mass centers are known 
for establishing the kinematical equation. The velocity of point 0A  in reference frame N is indicated as 

0ANνr , which shows zero as a result since that point is located of a point pinned rigidly to reference 
frame N. The velocities of points * *
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The kinematical equations are completed when all velocities of all points and accelerations of mass 
centers are known. 

3.3 Kane’s Method 

In Kane’s approach, partial angular velocities and partial velocity vectors can be determined straightly 
from angular velocity and velocity of point expressions. The use of partial angular velocities is to 
define rotation of bodies in responses to applied torques. Generally, the partial velocities vectors able to 
obtain at points where forces act, while partial angular velocities can be obtained fir rigid bodies on 
which torques or moment act. Therefore, these velocities can be factored into the following form, 

3 1 2( ) (0)N A a u uω = +
rr

%

Where, the quantities , ( 1, 2)i iu q i≡ =& ,
1u  is the first generalized speed of the system and 

2u  is defined as the 
second generalized speed. 

The generalized active and inertia forces are then formulated for each segment bodies. Vector dot 
product between partial velocities of points and forces acting on those points should be added together 
for creating the generalized active forces. Furthermore, dot products between partial angular velocities 
and torque are summed together with the previous results. The generalized inertial forces are computed 
after calculating the generalized active forces. The dot products between the partial velocities of the 
mass center and the inertial forces are composed, as well as the dot products between the partial 
angular velocities and inertial torques. Equations below represent the summarization of the generalized 
active forces and the generalized inertial forces as follows, 
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Where
1F and

2F are generalized active forces and *
1F and *

2F are generalized inertia forces. 

These dynamic equations can be represented in matrices form,  
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Where M : mass matrix 
Q
r
&& : angular  acceleration vectors 
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: vector of moments from gravitional forces 
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: vector of moments from external forces 
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 is defined as the second generalized speed.

The generalized active and inertia forces are then formulated for each segment 
bodies. Vector dot product between partial velocities of points and forces 
acting on those points should be added together for creating the generalized 
active forces. Furthermore, dot products between partial angular velocities 
and torque are summed together with the previous results. The generalized 
inertial forces are computed after calculating the generalized active forces. The 
dot products between the partial velocities of the mass center and the inertial 
forces are composed, as well as the dot products between the partial angular 
velocities and inertial torques. Equations below represent the summarization 
of the generalized active forces and the generalized inertial forces as follows,
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Eventually, matrices form in (Sharifah Alwiah et.al.,2011)  similar to this model 
but have certain modified because of more links planar are used. Therefore, 
those matrices can be able to utilize manually calculations for investigating 
the motion of trunk during lifting and also determine the joint forces and 
moments acting on the body.

4.0	    RESULT AND DISCUSSION

4.1   Description of Lifting Motility

The motion of the subject during lifting a load is shown in Figure 2. The 
numbered points represent movement of subject which marked in accordance 
with respective moving: standing position (1), lowering condition (2-4), 
squatting (5) and lifting a load (6-9). These movements are standardized while 
collecting a motion data.
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Eventually, matrices form in (Sharifah Alwiah et.al.,2011)  similar to this model but have certain 
modified because of more links planar are used. Therefore, those matrices can be able to utilize 
manually calculations for investigating the motion of trunk during lifting and also determine the joint 
forces and moments acting on the body. 

4.0    RESULT AND DISCUSSION

4.1   Description of Lifting Motility

The motion of the subject during lifting a load is shown in Figure 2. The numbered points 
represent movement of subject which marked in accordance with respective moving: standing 
position (1), lowering condition (2-4), squatting (5) and lifting a load (6-9). These movements are 
standardized while collecting a motion data. 

FIGURE 2 
 The sequential movement of subject during lifting a load which representing in sagittal (side) plane. 

The spatial position of the each joints are shown by small grey closed circles. 

The model development in section 3 is used for determining the value of torque, or moment of force 
for each joint (ankle and knee) on human body. Another torque of joints, however, will be investigated 
in different model. Generally, the model developed is utilized the kinematic and anthropometry data 
(Winter, 2005) obtained from a university student while performing a lifting task. In order to elaborate 
the rotational movement, three significant points are identified, which represent a point in the phases 
while a subject performing a lifting movement. All these crucial points are called an event. The first 
event identified is the standing posture, which occurs in the subject in beginning stage of lifting 
motion. Then, subject moved slightly anterior relative to body for picking a load during squat lifting 
technique. During squat lifting, knee is greater flexion and also has a decrease hip flexion. This event 
is called trunk flexion when subject in lowering condition. Finally, subject is in a follow through phase 
and her body move upward while lifting a load to initial condition (standing posture). 

4.2   Comparison of Experimental (measured) with Model (predicted) results

FIGURE 2
 The sequential movement of subject during lifting a load which representing in 
sagittal (side) plane. The spatial position of the each joints are shown by small 

grey closed circles.
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The model development in section 3 is used for determining the value of 
torque, or moment of force for each joint (ankle and knee) on human body. 
Another torque of joints, however, will be investigated in different model. 
Generally, the model developed is utilized the kinematic and anthropometry 
data (Winter, 2005) obtained from a university student while performing a 
lifting task. In order to elaborate the rotational movement, three significant 
points are identified, which represent a point in the phases while a subject 
performing a lifting movement. All these crucial points are called an event. 
The first event identified is the standing posture, which occurs in the subject 
in beginning stage of lifting motion. Then, subject moved slightly anterior 
relative to body for picking a load during squat lifting technique. During squat 
lifting, knee is greater flexion and also has a decrease hip flexion. This event is 
called trunk flexion when subject in lowering condition. Finally, subject is in a 
follow through phase and her body move upward while lifting a load to initial 
condition (standing posture).

4.2	 Comparison of Experimental (measured) with Model (predicted) 
results

Evaluation the quality of model gives indication about the validity of modeling 
and experimental results. The validity and quality are identified with served a 
comparison between modeling and experimental results. Figure 3 depicts the 
conventions of joint torque at ankle joint from two subjects. These figures able 
to demonstrate a verification of uselessness model developed with having a 
comparison between torques values from experiment (Figure 3a and 3c) and 
model (Figure 3b and 3d).
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FIGURE 3
The conventions of joint torque at ankle joint from 2 subjects. Subject 1 are 

represented a pattern of joint torque (ankle) in (a) from experiment and (b) from model. 

Evaluation the quality of model gives indication about the validity of modeling and experimental 
results. The validity and quality are identified with served a comparison between modeling and 
experimental results. Figure 3 depicts the conventions of joint torque at ankle joint from two subjects. 
These figures able to demonstrate a verification of uselessness model developed with having a 
comparison between torques values from experiment (Figure 3a and 3c) and model (Figure 3b and 3d). 

.

For the convenience of discussion, joint torques calculated by using inverse dynamic with applied 
Kane’s method and called predicted torque, while torques from the experiment results named as a 
measured torques. As can be seen, torque values or patterns of ankle exclusively showed either from 
experiment or model results. It is relevant while accomplished a comparison by choosing one items for 
examine the similarities or differences. Apparently, Figure 3(a) and 3(b) are exhibited an exactly a 
similar graph patterns of torque values of ankle. Likewise in Figure 3(c) and 3(d). Based on graph 
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.

For the convenience of discussion, joint torques calculated by using inverse dynamic with applied 
Kane’s method and called predicted torque, while torques from the experiment results named as a 
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FIGURE 3 
The conventions of joint torque at ankle joint from 2 subjects. Subject 1 are 

represented a pattern of joint torque (ankle) in (a) from experiment and (b) from 
model. Similarly, subject 2 are represented 

For the convenience of discussion, joint torques calculated by using inverse 
dynamic with applied Kane’s method and called predicted torque, while 
torques from the experiment results named as a measured torques. As can 
be seen, torque values or patterns of ankle exclusively showed either from 
experiment or model results. It is relevant while accomplished a comparison 
by choosing one items for examine the similarities or differences. Apparently, 
Figure 3(a) and 3(b) are exhibited an exactly a similar graph patterns of torque 
values of ankle. Likewise in Figure 3(c) and 3(d). Based on graph below, the 
values of joint torques are unconsidered because of limitations that influenced 
the result. One of the limitations is different anthropometric characteristics 
between subjects. The variances of these characteristics are revealed from 
Dempster et al since able to summarize and express an average of human 
anthropometric characteristics. Discrepancies of anthropometric data between 
human are inherent with having a different of race, sex, age, body mass and 
others factors. Generalizations of the results are computed for shortcoming 
these variances. Anthropometric data from (Winter,2005) are utilized for 
decisive the joint torques.

4.3	   Joint Torques Prediction using Model

The results of this study indicate that mathematical model using inverse 
dynamic approach is beneficial for determining the moment of force at human 
joints. The statistical values of torques (max. and min.) produced by three 
subjects in lifting task are presented in Table 1. It shows the values of torque 
are obtained at each joint, such as the ankle and knee joint, while subject is 
performing the lifting task. Lifting posture in time variation is defined by 
selecting the statistical values (maximum and minimum) of torque for each 
joint. As can be seen, in each of events have own values of joint torque whether 
in positive and negative value. 
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TABLE 1 
Selected statistical values of torques (max. and min.) produced by human body 

in three
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TABLE 1
Selected statistical values of torques (max. and min.) produced by human body in three 

below, the values of joint torques are unconsidered because of limitations that influenced the result. 
One of the limitations is different anthropometric characteristics between subjects. The variances of 
these characteristics are revealed from Dempster et al since able to summarize and express an average 
of human anthropometric characteristics. Discrepancies of anthropometric data between human are 
inherent with having a different of race, sex, age, body mass and others factors. Generalizations of the 
results are computed for shortcoming these variances. Anthropometric data from (Winter,2005) are 
utilized for decisive the joint torques. 

4.3   Joint Torques Prediction using Model 

The results of this study indicate that mathematical model using inverse dynamic approach is 
beneficial for determining the moment of force at human joints. The statistical values of torques (max. 
and min.) produced by three subjects in lifting task are presented in Table 1. It shows the values of 
torque are obtained at each joint, such as the ankle and knee joint, while subject is performing the 
lifting task. Lifting posture in time variation is defined by selecting the statistical values (maximum 
and minimum) of torque for each joint. As can be seen, in each of events have own values of joint 
torque whether in positive and negative value.

A two link-segment analysis yields the moment of force at every joint during the time course of lifting 
movement. Figure 4 illustrates value of torques has changes as movement of subject. The figure is 
depicted value of torques (Nm) in vertical axes while time in frames in horizontal axes. In Figure 
3, three events are divided for segmentation process with synchronize on motion analysis. There is 
a standing, lowering and lifting events. Through these figures, trajectory of ankle and knee torque 
was nearly to the zero torque at starting time. In lowering condition, however, the ankle and knee 
torque decreased sharply for three subjects then increased slowly until exist a lifting event. All 

Subjects Joints Values of torque in three phases (Nm) 
Standing (1) Lowering (2) Lifting (3) 

Max.(peak) Min. Max. Min.(peak) Max.(peak) Min.
1 Ankle 650.4278     -798.186 1142.574 -5798.04 3789.361 -1911.42 

Knee 414.0394 -613.325    1025.968 -5456.44 2419.127 -1399.62 

2 Ankle 866.2527    -1323.69 2918.828 -4857.15 3749.484 -3444.68 

Knee 664.6865 -1027.26 2284.641 -4367.09 2847.696 -2934.52 

3 Ankle 1240.259 -1848.47 764.3639 -2925.16 3944.329 -4013.94 

Knee 1078.351 -1748.34 611.4754 -2733.29 2692.748 -3833.3 

A two link-segment analysis yields the moment of force at every joint during 
the time course of lifting movement. Figure 4 illustrates value of torques has 
changes as movement of subject. The figure is depicted value of torques (Nm) 
in vertical axes while time in frames in horizontal axes. In Figure 3, three events 
are divided for segmentation process with synchronize on motion analysis. 
There is a standing, lowering and lifting events. Through these figures, 
trajectory of ankle and knee torque was nearly to the zero torque at starting 
time. In lowering condition, however, the ankle and knee torque decreased 
sharply for three subjects then increased slowly until exist a lifting event. All 
description of lifting movements is examined by using the moment of force 
curves or pattern.
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FIGURE 4
Torques of joints at each segment from standing posture, lowering, and lifting position. The knee 

torque is represents in dash line while a solid line for ankle torques value. These figures are 
i i d i h bj f j i

description of lifting movements is examined by using the moment of force curves or pattern. 

.

In joint movement terminology, bending and straightening movement are donated as flexion (negative 
sign) and extension (positive sign), respectively. The phase of flexion movement (standing and 
lowering) was significantly different values of torque with extension movement (lifting). Based on 
Table 1, standing and lowering events are considered as a maximum (max) values to demonstrate their 
movement equated to lifting event which selected a minimum (min) value. As explained details on the 
above discussion, Figure 4 has been illustrated on the changes or transition of torque on the joint in 
each position.

Nonetheless, while subject is in standing or initial position, forces to make next movement are 
generated by upper body to generate the downward vertical component of force. Then the force 
gained transferred from upper by sequential to the trunk toward to lower extremity. Afterward, the 
trunk rotates then force is transmitted to the knee and ankle to achieve an event of lifting a load 
from floor to waist height of subject. At this point, subject 1 produced the value of torque for ankle 
joint is greater than knee joint which is 3789.361 Nm while subject 2 and subject 3 are committed 
3749.484 Nm and 3944.329 Nm, respectively. The greater value of torque at ankle joint contributes 
to bend of the knee for keeping the back straight.  

During the extension movement of lower extremity, the lower extremity has full force to execute 
the standing back. Hence, the transfer force from knee to ankle acceleration. Finally, in the follow 
through phase, the value of torque at each joint decrease as subject in initial condition (standing 
phase).The convention for the moment of force is assign in counterclockwise moments acting on a 

(a) 

1

(b)

2 31 12 23 3

(c) 

1

FIGURE 4 
Torques of joints at each segment from standing posture, lowering, and lifting 
position. The knee torque is represents in dash line while a solid line for ankle 
torques value. These figures are instantiated in three subjects of joints torques.

In joint movement terminology, bending and straightening movement are 
donated as flexion (negative sign) and extension (positive sign), respectively. 
The phase of flexion movement (standing and lowering) was significantly 
different values of torque with extension movement (lifting). Based on Table 
1, standing and lowering events are considered as a maximum (max) values 
to demonstrate their movement equated to lifting event which selected a 
minimum (min) value. As explained details on the above discussion, Figure 4 
has been illustrated on the changes or transition of torque on the joint in each 
position.
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Nonetheless, while subject is in standing or initial position, forces to make 
next movement are generated by upper body to generate the downward 
vertical component of force. Then the force gained transferred from upper by 
sequential to the trunk toward to lower extremity. Afterward, the trunk rotates 
then force is transmitted to the knee and ankle to achieve an event of lifting a 
load from floor to waist height of subject. At this point, subject 1 produced the 
value of torque for ankle joint is greater than knee joint which is 3789.361 Nm 
while subject 2 and subject 3 are committed 3749.484 Nm and 3944.329 Nm, 
respectively. The greater value of torque at ankle joint contributes to bend of 
the knee for keeping the back straight. 

During the extension movement of lower extremity, the lower extremity has 
full force to execute the standing back. Hence, the transfer force from knee to 
ankle acceleration. Finally, in the follow through phase, the value of torque 
at each joint decrease as subject in initial condition (standing phase).The 
convention for the moment of force is assign in counterclockwise moments 
acting on a segment distal to the joint are positive, hence clockwise moments 
are negative (Hall,2007). Thus, a knee and ankle flexor moment is shown to be 
negative and also knee and ankle extensor moment is positive during a person 
lifted a load. Therefore, the direction of a torque is the most important to 
characterize some of lifting movement. Otherwise, results of model simulation 
in figure also demonstrated a comparison between value of knee and ankle 
torque. The primary finding of this study was that significantly observed in 
order to understand value of moment of force during lifting task. Through this 
simulation, it was shown that the greater peak (min) knee torque are tangible 
than ankle torque during lowering event. In contrast to lifting event, the ankle 
torque is obtained greatest values (max. peak) than knee torque. Andrew et al. 
pointed out that knee torque are produced a greatest value than ankle torque 
during lowering condition (Fry et.al.,2003). They examined that squat lifting 
may minimize the stress on knee when the knees were permitted to move 
anteriorly past the toes.

In this research work, a model development using dynamic equation of motion 
via Kane’s method is proposed. The model is valuable for biomechanics 
research whose is going in depth in mathematical model which represent 
the reality of human movement especially in lifting task. An accurate result 
because of derivation for each segment of body is inter-related that may be 
better produced. All of variables have been considered systematically. This 
model also can be utilized the any method to represent the dynamic equation 
of motion such as Newton- Euler, Gordon method and other related methods. 
Interestingly, Kane’s method have own beneficial studies due to derivation 
procedure that first order derivation are considered. They emphasized all 
movement on each rigid bodies of human movement.
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5.0	 CONCLUSIONS

In conclusion, the lower extremity are in flexion position during lowering 
phase has achieve negative value of torque compared to extension position 
during lifting material. Therefore, a mathematical model has been presented 
by using Kane’s dynamical equations of motion is able to provide the torques 
values and description of trunk motion during lifting techniques especially in 
squat lifting. This work is important because it shows that a motion analysis 
coupled with Kane’s method provides human with revelation information 
about where their greatest torque when performing an activity especially this 
task. 
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